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Abstract

Several important issues involved in Adaboost-cascade learning still remain open problems. In this work, several novel
ideas are proposed for improved Adaboost-cascade object detection. The most important one is the novel Topology
Oriented Adaboost (TOBoost) algorithm. TOBoost immediately minimizes the classification error of each selected
feature, and thus enables the final detector to be more discriminative and to converge more quickly. Moreover, a
simple cascading scheme is presented for tuning the cascade parameters of TOBoost; and Gaussian kernel density
estimation is introduced to enhance the generalization ability of TOBoost. Another important contribution is the
topology modeling of Haar-like (HL) features, which reveals an interesting property of negative HL features and
significantly avoids unnecessary training computations. Non-adjacent Haar-like features are consequently configured
for more effective object representation. The above enhancements result in a more efficient and stable detector with
fewer features. Extensive experiments in the application of iris detection are conducted and encouraging performance
is achieved.

Key words: Object Detection, Haar-like Features, Adaboost-cascade Learning, AUC Optimization, Iris Detection,
Iris Biometrics.

1. Introduction

Object detection is a challenging problem in computer vision due to the variations of appearances caused by
illuminations, poses, occlusions, etc., and still remains a hot research topic [2, 14, 20, 21]. Recently, Adaboost-
Cascade (AC) learning has been regarded as a break-through in object detection [2, 3, 11, 12, 20, 21]. As illustrated
in Fig. 1, Adaboost-cascade learning incorporates three advantages for robust real-time object detection [21]: 1)
a specific feature set (e.g., Haar-like features) for object representation; 2) efficient Adaboost learning for feature
selection; and 3) the cascade structure for fast training and execution.

Although having been exhaustively explored in the literature [4, 6, 15, 18, 19], several important issues in Ad-
aboost cascade learning are still not adequately addressed and remain open problems. The first problem is related to
the feature set. Existing features (e.g. Haar-like features [13, 20]) commonly concentrate on adjacent image struc-
tures. While adjacent structures are powerful in capturing local details, we argue that non-adjacent structures should
be more efficient and stable in object detection (especially under the mechanism of Adaboost learning). Another
important problem associated with the feature set is the double-sliding of negative features. In Adaboost-cascade
learning, negative samples are cropped by sliding a sub-window over a negative image, while the candidate features
are obtained by sliding some kind of features over different positions of each sample. Such double-sliding mechanism
results in severe duplicated computations and hence an unacceptably time-consuming training procedure. By care-
fully modeling the candidate features, we show that such duplications can be avoided, which greatly accelerates the
training procedure.
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Figure 1: A generalized flowchart of Adaboost-cascade learning, which incorporates three advantages: features, Adaboost learning and cascading.

A second problem is related to the Adaboost learning. In conventional Adaboost algorithms, two histograms
are used to approximate the probability distributions of the positive and negative samples. A weak learner is then
developed based on some statistical measures (e.g. Kullback-Leibler divergence [14]) of the two distributions, and
a look up table (LUT, or equally decision tree [19]) based component classifier is built. However, these empirical
statistics remain intermediate objectives to classification error [15]. That is, the feature that minimizes these statistics
is not necessarily the one that minimizes the classification error, thus resulting in a suboptimal detector. Moreover,
the histogram-based scheme also leaves another inevitable problem: in order to approach the genuine probability
distributions, a large number of training samples must be maintained, which requires heavy memory and computation
demands, or else the resultant classifier can be over-fitting and sensitive to noise.

A third problem is related to the cascade structure. Due to the explosively large computation and memory demands
of Adaboost learning, cascade learning (via bootstrap) has become a necessity (so that only a fraction of possible
negative samples are maintained at each stage). Unfortunately, this conflicts with LUT classifier which prefers a large
number of training samples. In other words, cascade learning can be harmful to the generalization ability of Adaboost
detectors. Moreover, optimal tuning of the cascade parameters is not trivial and still remains an open problem.

In this paper, we present several novel ideas for Adaboost learning to address each of these problems. Firstly,
non-adjacent Haar-like features are adopted to represent the structure of the object. Secondly, we model the Haar-like
features by their topological properties. This topology model reveals an interesting intrinsic property of Haar-like
features, which not only avoids duplicated computations on negative samples but also enhances the robustness of
Adaboost learning. Thirdly, a novel topology oriented Adaboost algorithm is proposed. In contrast with its predeces-
sors, TOBoost’s weak learner directly minimizes the classification error, and therefore enables the selected feature to
be more discriminative. Fourthly, we present a simple scheme to tune the cascade parameters for Adaboost-cascade
learning. Finally, Gaussian kernel density estimation is introduced into Adaboost, which greatly enhances its gener-
alization ability. The above enhancements result in a more efficient and stable detector with fewer features.

The rest of the paper is organized as follows. In Section 2, we describe how to avoid duplicated computations
during Adaboost learning by simply modeling the Haar-like features by their topological properties. In Section 3, the
novel TOBoost algorithm and the Gaussian kernel density estimation scheme are introduced. In Section 4, extensive
experiments and discussions are presented for iris detection. In Section 5, we draw some conclusions.

2. Topology Modeling of Haar-like Features

A central objective of object detection, compared with object identification, is to tolerate individual variations but
reveal the intrinsic properties (e.g. the structure) that all or most objects should have. In this work, Haar-like features
are adopted for object representation. The justifications are as follows: 1) Haar-like (HL) features are computation-
ally effective, especially when armed with integral image [20]. 2) Haar-like features show tolerance to appearance
variations (partly due to the averaging over the rectangular region), and are efficient for representing image structures
for object detection.
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Despite of the fast computation of Haar-like features, existing Adaboost-cascade learning algorithms suffer greatly
from heavy computation due to the huge number of candidate features and negative samples. In this section, we show
how the computation can be dramatically reduced via topology modeling of Haar-like features. This begins with a
generalized representation of them.

2.1. Generalized Haar-like Features
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Figure 2: Generalization of Haar-like features. (a): adjacent Haar-like features and (b): non-adjacent Haar-like features.

As illustrated in Fig. 2 (a), Haar-like features are defined as the intensity difference between the diagonal yellow
block and the blue block. Considering that each individual Haar-like feature can be decomposed into several (upright
or tilted) rectangles, we propose to use the following representation to denote Haar-like feature ht :

ht =
{
θ, n,

[
xi, yi, hi,wi, πi

]n

i=1

}
(1)

where θ ∈ {0, 1} is the type of each rectangle (with 0 for upright and 1 for tilted), n ∈ {2, 3} denotes the number
of rectangles in ht,

(
xi, yi

)
denotes the coordinates of the upper-left corner of the i-th rectangle (with respect to the

upper-left corner1 of the minimal rectangle that encompasses ht, see Fig. 2),
(
hi,wi

)
is the height and width of i-th

rectangle, and πi is the weight of the i-th rectangle such that
∑

i π
iAreai = 0 (where Areai is the area (i.e., number of

pixels) of the i-th rectangle. ). The Haar-like feature value of ht is calculated as:

φ(ht) =
∑

i

πiRectS umi (2)

where RectS umi denotes the pixel sum of the i-th rectangle.
Equation 1 indicates that different Haar-like features can be obtained by simply tuning these topology parameters

(and thus enables flexible configurations for representing image structures of different complexities). In particular,
Eq 1 directly enables the extension of the traditional adjacent Haar-like features (Fig. 2(a)) to non-adjacent ones
(Fig. 2(b)). As pointed out in Section 1, non-adjacent structures should be more efficient and stable in object detection.

More importantly, Eq. 1 paves the way for the following topology modeling of Haar-like features.

1For titled Haar-like features, the upper-left corner usually refers to the top corner of each titled rectangle [13].
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2.2. Topology Modeling of Haar-like Features

In Adaboost learning, the candidate features are obtained by sliding the Haar-like feature ht over different locations
(xs, ys) of sample s, denoted as follows:

φxs,ys,ht = {xs, ys, ht} (3)

where (xs, ys) is the coordinates of the upper-left corner of ht on s. For example, features φxs,ys,ht and φxs+∆x,ys+∆y,ht in
negative sample Ix,y of Fig. 3 are considered as different features even though they are derived from the same Haar-like
feature ht (i.e. with the same topology). From this point of view, ht is considered as parent-HL feature while φxs,ys,ht

child-HL feature. Clearly, the number of child-HL features φxs,ys,ht that can be derived from parent-HL feature ht is:

M = (WinH − HaarH) (WinW − HaarW) (4)

where WinH × WinW is the size of the samples and HaarH × HaarW is the size of the minimal rectangle that
encompasses ht, see Fig. 3.

To go through the feature calculation of Adaboost learning, we continue to consider the extraction of negative
samples. In Adaboost learning, the negative samples are cropped from a set of negative images at different scales2 and
locations. Here, we denote each cropped negative sample with s = Ix,y, where (x, y) is the coordinates of the upper-left
corner of the cropped negative sample on I, see Fig. 3. Suppose the negative images are of size ImH × ImW and the
negative samples are of size WinH ×WinW, then at most we can crop Ns negative samples from each negative image
in total:

Ns = (ImH −WinH) (ImW −WinW) (5)

With the above definitions, it is straightforward that the number of feature values that should be extracted from
one negative image I associated with one parent-HL feature ht is then:

NI,φht
= Ns × M (6)

where Ns is the number of candidate samples that can be cropped from I, and M is the number of child-HL features
φht derived from the parent-HL feature ht. Equation 6 means we will have to calculate NI,φht

feature values associated
with one parent-HL feature ht on each negative image I.

Equation 6 contains many duplicated computations. To get some light on this, we consider the above procedure
from another point of view. If we directly convolve the parent-HL feature ht with the negative image I, the total
number of valid values is then:

NI,ht = (ImH − HaarH) (ImW − HaarW) (7)

where HaarH × HaarW is the size of ht. Equation 7 means we can at most calculate NI,ht valid feature values
associated with the parent-HL feature ht on image I. Clearly, NI,ht ' Ns because ImH � WinH ' HaarH and
ImW � WinW ' HaarW. For example, M = 256, Ns = 1, 000, 000, NI,ht = 1032256 when ImW = ImH = 1024,
WinH = WinW = 24 and HaarH = HaarW = 8. That is surprising because Eq. 6 shows that NI,φht

= Ns × M '
NI,ht × M feature values have to be calculated, but Eq. 7 shows that we can at most get NI,ht valid feature values
associated with ht and I. Clearly, this indicates severe duplicated computations during feature calculation on negative
images.

Such duplications can also be clearly demonstrated as follows. Informally, Haar-like feature calculation can be
denoted as:

Ix+∆x,y+∆y · φxs,ys,ht = (Ix,y ∗ δ∆x,∆y ) · φxs,ys,ht

= Ix,y · (φxs,ys,ht ∗ δ∆x,∆y ) = Ix,y · φxs+∆x,ys+∆y,ht

(8)

where · is the pointwise multipliers, ∗ is the convolution operator, δ is the Dirac’s delta function, and Ix,y ∗δ∆x,∆y means
sliding the subwindow with (∆x,∆y) displacements. From Eq. 8, we can see that Ix+∆x,y+∆y ·φxs,ys,ht = Ix,y ·φxs+∆x,ys+∆y,ht ,
which is schematically illustrated in Fig. 3, where φxs+∆x,ys+∆y,ht in sample Ix,y overlaps with feature φxs,ys,ht in sample

2Here, we fix at original scale without loss of generalization.
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Figure 3: Illustration of duplicated computations. Due to the “double sliding” on negative images, child-HL feature φxs+∆x ,ys+∆y ,ht in sample Ix,y
overlaps with child-HL feature φxs ,ys ,ht in sample Ix+∆x ,y+∆y φxs ,ys ,ht , resulting in duplicated computations.

Ix+∆x,y+∆y . That is, different child-HL features on different samples ‘happen’to overlap each other and thus produces
unnecessary duplicated computations.

Furthermore, taking insights into the calculation of φxs,ys,ht on negative image I, we can see that the entire feature
values of φxs,ys,ht on I are calculated (on exhaustively randomly cropped negative samples Ix,y) as follows:

FI,φxs ,ys ,ht
=

{
Ix,y · φxs,ys,ht

}
x,y

= I ∗ φxs,ys,ht = (I ∗ ht) ∗ δxs,ys

(9)

Similarly, the entire feature values of φxs+∆x,ys+∆y,ht are calculated as:

FI,φxs+∆x ,ys+∆y ,ht
=

{
Ix,y · φxs+∆x,ys+∆y,ht

}
x,y

=I ∗ φxs+∆x,ys+∆y,ht = (I ∗ ht) ∗ δxs+∆x,ys+∆y

(10)

Considering the double-sliding of child-HL features and negative samples, and ImH � ∆x, ImW � ∆y, we can
approximately say that FI,φxs ,ys ,ht

' FI,φxs+∆x ,ys+∆y ,ht
except a few samples on the margins of I. This is quite surprisingly

because it means that the feature values of φxs,ys,ht is almost the same as φxs+∆x,ys+∆y,ht (and thus duplicated computations
again). Hence, rather than calculating FI,φxs ,ys ,ht

exhaustively on different (xs, ys), we can instead calculate I ∗ ht and
then all the FI,φxs ,ys ,ht

can be derived from Eq. 9 and Eq. 10. As a result, most duplicated computations are avoided by
simply considering the feature calculation from another novel point of view, i.e., the topology modeling of Haar-like
features. This enables a much faster Adaboost trainer. More importantly, the topological model reveals an intrinsic
property of negative samples: the feature values associated with different child-HL features from the same parent-HL
feature should be almost the same at the first stage. This interesting property is desirable for enhancing the robustness
of the learned detector. We will discuss the usefulness of the topological model in more details in Sec. 4.1.

However, it must be emphasized that although topology modeling is demonstrated on Haar-like features, it can
easily be generalized to other features, because the underlying idea of topology modeling is not the topology of
Haar-like features but the double-sliding mechanism that is common in Adaboost learning.

It must also be emphasized that although millions of child-HL features can be topologically modeled, they remain
individually distinctive on positive samples. This is because the positive samples are not obtained by ‘sliding/sampling
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over some a positive image’. For example, φxs,ys,ht and φxs+∆x,ys+∆y,ht in Fig. 3 on positive sample Ix,y are distinctive
because there does not exist positive sample Ix−∆x,y−∆y (so that Ix−∆x,y−∆y · φxs+∆x,ys+∆y,ht = Ix,y · φxs,ys,ht ) or Ix+∆x,y+∆y (so
that Ix+∆x,y+∆y · φxs,ys,ht = Ix,y · φxs+∆x,ys+∆y,ht ). That is, Ix+∆x,y+∆y and Ix−∆x,y−∆y can not be positive samples if Ix,y is a
positive sample. Clearly, the huge number of distinctive child-HL features on positive samples must contain much
redundancy, which requires an enhanced Adaboost learning algorithm for selecting the most discriminative ones for
object detection.

3. Topology Oriented Adaboost Learning
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Re-weight
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Figure 4: A generalized flowchart of Adaboost learning.

Adaboost is a well-known large margin learning algorithm [6] that can select a small set of the most discriminative
features from a candidate feature pool, and combines them into an additive model:

C(x) = sign


T∑

t=1

ct
(
φt(x)

)
 (11)

where φt denotes the selected child-HL feature φxs,ys,ht , ct
(
φt(x)

)
denotes the component classifier constructed based

on φt. A generalized flowchart of Adaboost learning is illustrated in Fig. 4. We can see that it involves three key
modules, namely the weak learner, the component classifier and the re-weighting function [9].

a) The Weak Learner: The weak learner is essentially the criterion for choosing the best feature φt on the weighted
training set.

b) The Component Classifier: The component classifier ct
(
φt(x)

)
outputs the confidence of a sample being a

positive based on its φt value.
c) Sample Re-weighting: Sample re-weighting enables that the subsequent component classifier can concentrate

on the hard samples by assigning higher weights to the samples that are wrongly classified by previous component
classifiers.

By tuning the above modules, several Adaboost variants have been proposed in the literature such as Discrete-
Boost [20], BayesianBoost [21], RealBoost [6], KLBoost [14], etc. as shown in Table 1, where P+

φi
, P−φi

are the
positive and negative probability distributions of φi on the weighted training set, L is the number of histogram bins
of P+

φi
and P−φi

, and FAR, FRR, AUC denote False Accept Rate, False Reject Rate, Area Under ROC3 curve respec-
tively. From Table 1, we can see that DiscreteBoost [20] and the BayesianBoost [21] try to minimize some kind of
classification error (e.g. Bayesian error in [21]), so that the selected feature is discriminative. However, their stump
based component classifiers loss much discriminative information. In contrast, confidence-rated boosting [6, 14, 19]
evolves with LUT-based component classifiers, however, their weak learners remain intermediate to the classification

3ROC: Receiver Operating Characteristics. ROC curve is a plot of FRR against FAR, see Fig. 8.
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Table 1: Several variants of Adaboost learning via tuning the weak learner, the component classifier.

error (i.e., not a tight approximation to the classification error). In other words, the feature that optimizes the weak
learner (e.g., KL divergence [14]) can not necessarily minimize the classification error. This means unnecessary loss
of efficiency of the weak learner in the viewpoint of classification error. Therefore, an desirable Adaboost algorithm
should at least satisfy the following criteria: 1) its component classifier makes full use of the discriminative ability of
the selected feature; 2) its weak learner immediately minimizes the classification error. This motivates the following
Topology Oriented Adaboost algorithm.

3.1. Topology Oriented Adaboost Learning

The Topology Oriented Adaboost (TOBoost) works as follows:
a) The Component Classifier: In TOBoost, the confidence-rated (i.e. LUT-based) component classifier is adopted

because it makes full use of the discriminative information of each selected feature. Given that the probability distribu-
tions of positive and negative samples are P+

φt
(φt(x)) and P−φt

(φt(x)) respectively (which can be considered as empirical
posterior probability), a common choice for the confidence being a positive sample is then the log ratio likelihood [6]:

ct(φt(x)) =
1
2

log
P+
φt

(φt(x)) + ε

P−φt
(φt(x)) + ε

(12)

where ε is a regularization factor that deals with possible noise in P+
φt

(φt(x)) and P−φt
(φt(x)).

b) The Weak Learner: Ideally, the weak learner should be able to choose the component classifier ct(φt(x)) that
minimizes the classification error on the current weighted training samples. ROC (Receiver Operating Characteristic)
curve has been considered as an appropriate indicator of the classification ability of a classifier. It is then desirable for
the weak learner to choose the feature φt whose ct produces the best ROC curve. In TOBoost, AUC (the Area Under
the ROC Curve) is adopted to quantitatively measure the ROC curves.

AUC =

∫ 1

0
FRR dFAR (13)

where (FAR, FRR) is a point on the ROC curve [9]. AUC corresponds to the summed classification error rate of a
considered classifier, and therefore can be a qualified candidate for the weak learner.

Based on Eq. 12 and Eq. 13, we then establish an enhanced Adaboost algorithm. Its weak learner (Eq. 13) imme-
diately minimizes the classification error, and its component classifier (Eq. 12) makes full use of the discriminative
information of each selected feature. This is precisely the kind of Adaboost that we are seeking at the very beginning
of this section.
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c) Sample Re-weighting: The underlying idea of the sample re-weighting is to assign higher weights to the samples
that are wrongly classified by previous classifiers, and vice versa. In this work, the traditional reweighting function is
adopted [6]:

wt+1(xi)← wt(xi) exp(−yiht(φt(xi))) (14)

where wt+1(xi) is the weight of sample xi after adding the t-th component classifier, and yi ∈ {+1,−1} is the class label
of xi. Clearly, Equation 14 assigns higher weights to the samples that are wrongly classified by previous component
classifiers so that the next component classifier can concentrate on these hard samples.

3.2. Cascade Structure

Cascade structure is advantageous because it significantly accelerates the execution speed in the run time by weed-
ing out the vast majority of non-target-objects in the early stages which are relatively simple to evaluate. However,
optimal tuning of cascade parameters during Adaboost-cascade learning is not trivial and can result in brittle detec-
tor [2, 7, 21]. Several cascade structures have been proposed in the literature, such as “Disjoint Cascade” [20], “Nested
Cascade” [11], “Soft Cascade” [2] and “Dynamic Cascade” [21]. In “Disjoint Cascade” and “Nested Cascade”, the
same cascade parameters (i.e., the max false alarm rate and the min hit rate) is assigned to each stage. This is obviously
not reasonable because it tends to be harder and harder for the later stages to achieve these requirements, resulting in a
time-consuming and brittle train procedure. In contrast, “Soft Cascade” and “Dynamic Cascade” evolve by assigning
lower requirement to the later stages, and achieve promising performance. In this work, we follow this idea.

The key objective of cascade parameter tuning is to get a proper setting of the max false alarm rate and min hit
rate for each stage under the requirement of the overall false alarm rate and hit rate. Similarly as “Soft Cascade” [2]
and “Dynamic Cascade” [21], we assume that both the min hit rate and the max false alarm rate at each stage change
exponentially as follows:

MinHitRate(t) = 1 − k1e−αt/T (15)

MaxFalseAlarm(t) = k2eαt/T (16)

where T is the desirable number of stages, k1, k2 is the normalization factor to satisfy the overall target performance
requirement, α is the free parameter for the trade-off between detection speed and accuracy. The larger the α, the
faster the resultant detector will be. In TOBoost, Eq. 15 and Eq. 16 are calculated given T and k2, under the condition
that:

OverallHitRate ≤ Πt MinHitRate(t) (17)
OverallFalseAlarm ≥ Πt MaxFalseAlarm(t) (18)

From Eq. 15 and Eq. 16, we can see that both the max false alarm rate and the min hit rate at stage t become larger
with t. The justifications are as follows: 1) a lower max false alarm rate (i.e., harder requirement on negative samples)
in the early stages releases the training burden of later stages, and enables fast training; 2) a lower min hit rate (i.e.,
relatively looser requirement on positive samples) in the early stages (together with the lower max false alarm rate)
allows us to weed out the majority of non-target-objects in the early stages, and enables fast execution.

3.3. Gaussian-KDE for P+
φt

and P−φt

From Section 3.1, we can see that both the weak learner and the component classifier are dependent on P+
φt

and
P−φt

, which are often empirically estimated via histograms. However, usually only a fraction of the candidate samples
are maintained at each stage due to the cascade structure. When the number of training samples is limited, samples
dropped into each bin can be insufficient for a stable estimation of the distribution but just an ad-hoc one of the current
training set. Consequently, the component classifier learned based on the limited training samples will be ad-hoc, i.e.,
sensitive to noise and has low generalization ability [8].

A possible solution to this problem is to introduce invariance to the training set via kernel density estimation
(KDE) [1]. The basic idea of KDE is to argument the training set using replicas of the existing training samples.
In particular, the replicas are often drawn from an appropriate distribution (e.g. Gaussian) centered at the seminal
sample. Following this idea, we directly introduce invariance into the feature values rather than the samples. Suppose
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p(φt(x)) is the probability density of a candidate feature φt, and we wish to estimate p(φt(x)) via a random sample set
x1, x2, ..., xN . In Gaussian-KDE, p(φt(x)) is estimated as follows [1]:

p̂(φt(x)) =
1
N

N∑

n=1

1
(2πσ2)1/2 exp

{
−|φt(x) − φt(xn)|2

2σ2

}
(19)

where σ denotes the standard deviation of the Gaussian kernel. Here Gaussian kernel is adopted for the sake of
smoothness [1, 8]. Thus our density model is obtained by placing a Gaussian over each feature value of the training
data and then adding up the contributions over the whole data set. The adoption of Gaussian kernel density estima-
tion can lead to significant improvement in generalization ability with neglectable computation, especially when the
number of training samples are limited [8].

-50 0 50 100 150 200 250
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Feature distribution on 10,000 samples

Feature distribution on 1,000 samples

Feature distribution on 1,000 samples 
after Gaussian kernel density estimation

Figure 5: The distributions of a candidate child-HL feature on 10, 000 iris images, 1, 000 iris images, and the Gaussian-KDE version of the 1, 000
one. We can see that Gaussian KDE provides a better estimation of the density distribution while using much less samples.

The usefulness of Gaussian kernel density estimation is illustrated in Fig. 5, where the distribution obtained on
10,000 iris images is surprisingly similar with the distribution obtained on only 1,000 iris images with Gaussian kernel
density estimation. This indicates that we can get a much better density estimation by Gaussian-KDE while using
much less training samples. As a result, the generalization ability of the final detector is expected to be enhanced.
A notable point in Gaussian KDE is the setting of σ which controls the trade-off between having p̂(φt(x)) close to
the data (at small σ) and having p̂(φt(x)) smooth (at large σ). A reasonable σ value should be set according to the
number of available training samples. For example, it is 1.5 for 30, 000 samples while 2.0 for 10, 000 samples in our
experiments.

4. Experiments and Discussions

In this section, we evaluate the proposed algorithm in the context of iris detection4. The objective of iris detection
is not only identifying the presence of iris in input video sequences but determining its position and scale as well. This
is quite different from iris localization or segmentation whose goal is to locate the valid part of iris for subsequent

4In this work, iris detection is adopted only for the purpose of explanations and experimental demonstrations. Instead of trapping ourselves on
the detailed descriptions on iris detection, we concentrate ourselves on explaining the basic ideas of these general methods.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Illustration of TOBoost iris detector. (a) The desirable iris structure. (b)-(f): Detection results of the TOBoost detector. We can see that
encouraging performance has been achieved by our TOBoost detector in the presence of occlusions, oblique view-angles, etc.

processing5. As an important module in iris biometrics, iris detection is challenging due to various types of noise
in the iris images such as occlusions, oblique view-angles, etc. [10]. Fortunately, iris posses an annular structure
that is desirable for Adaboost learning (see Fig. 6(a)). Therefore, iris detection should be another typical application
of Adaboost-cascade detector except face detection. In this work, three challenging iris image databases [10] (i.e.,
CASIA-Iris-V3 [5], ICE v1.0 [16] and UBIRIS v1.0 [17]) are adopted for Adaboost learning and test, with more than
60,000 iris images in total. We also collected more than 20,000 non-iris images in the web as the negative images,
from which billions of negative samples can be cropped. Extensive comparison experiments (with DiscreteBoost [20],
RealBoost [6], “Dynamic Cascade” [2], etc.) are performed based on this large data set to demonstrate the efficiency
and effectiveness of the proposed algorithm.

4.1. Overall Training Speed

AdaBoost Discrete Boost Nested Cas. Dynamic Cas. TO-
Alg. (Viola&Jones, 2004) (Huang, 2007) (Xiao, 2007) Boost

Time(min) 92 56 49 36

Table 2: The training speed of different Adaboost algorithms.

One advantage of the topology oriented Adaboost is its training effectiveness. The training speed of TOBoost is
expected to be faster than traditional Adaboost-cascade algorithms. To evaluate the actual effects, we train detectors
with the same setting (i.e., the same training set and the same required overall error rates) by different Adaboost-
cascade algorithms. The time cost of each algorithm is listed in Table 2. As expected, TOBoost is the fastest. This is
because: 1) topology modeling of Haar-like feature avoids much duplicated computations; 2) Non-adjacent Haar-like
features are more discriminative and stable for object detection; 3) the AUC-oriented weak learner is more aggressive
and 4) the proposed cascade calibration scheme results in more reasonable cascade parameters.

In addition, “Nested Cascade” [11] and “Dynamic Cascade” [21] are both faster than the original Discrete Ad-
aboost [20], because the later wastes the discriminative information of previous stages. “Dynamic Cascade” is

5Please refer to [10] for other state-of-the-art iris localization methods.
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slightly faster than “Nested Cascade” because “Nested Cascade” uses the same cascade parameter for each stage,
and therefore make it difficult to converge in the later stages.

4.2. The Usefulness of Topology Modeling of Haar-like Features
As described in Section 2, the feature calculation on negative images is accelerated because most duplications

are avoided via topology modeling of Haar-like features. It must be noted that this is true only under the assumption
that negative samples are extracted in adjacent pixel-wise sliding windows. In practical implementation of Adaboost-
cascade learning, the windows would not slide but jump for training speedup. Therefore, the overlap is limited and
the speed benefit of this topological model would be degraded. However, even in this case, the topology modeling of
Haar-like features are still useful. The reasons are as follows:

1. As indicated in Eq. 6, in the pixel-wise sliding mode the number of feature values that should be extracted from
one negative image I associated with one parent-HL feature ht is:

N slide
I,φht

= Ns × M (20)

where Ns is the number of candidate samples that can be cropped from I, and M is the number of child-HL
features φht derived from the parent-HL feature ht. Suppose the horizontal and vertical sampling rates (in the
jump mode) are S x and S y respectively, then the number of feature values we should calculated becomes:

N jump
I,φht

=
Ns

S xS y
× M (21)

On the other hand, according to the topological model, the number of feature values we have to calculate from
one negative image I associated with one parent-HL feature ht is:

N slide
I,ht
' Ns (22)

From the above three equations, we can see that the topological model should be faster in case M > S xS y.
2. Except for the speed consideration, another important issue is the number of samples used in Adaboost learning.

From Eq. 21 we can see that the number of calculated negative samples associated with one specific child-
HL feature φht (in the jump mode) is Ns/S xS y. On the other hand, in the topological model, the number of
calculated negative samples is Ns. This clearly indicates that more samples are used in TOBoost compared
with the traditional jump mode. And according to our experience, more samples usually result in more stable
detector with larger generalization ability.

3. Most importantly, topological model reveals an intrinsic property of negative samples: the feature values asso-
ciated with different child-HL features from the same parent-HL feature should be almost the same at the first
stage (Refer to Eqs. 8- 10). However, in the traditional jump mode, different child-HL features tend to have
different feature distribution due to the jump mode in the extraction of negative samples. This conflicts with
this intrinsic property. Here we argue that maintaining this intrinsic property is advantageous because: in object
detection, our goal is to reveal the specific characteristics (the discriminative features) that all positive sam-
ples hold, rather than the discriminative features associated with negative samples. In other words, we should
focus on the discriminative features of positive samples while suppressing those of negative samples, so that
the resultant detector will have larger generalization ability, i.e., have less dependence on the negative training
samples.

Therefore, the speed acceleration is only one of the advantages of topology modeling. Other advantages include
more possible samples than jump mode, and the preserving of the intrinsic property of negative samples.

4.3. The Effects of Non-adjacent Features
An important issue in Adaboost is a sufficiently large feature pool. The required number of Haar-like features to

train a TOBoost detector on the basic [20], extended [13] and the generalized Haar-like features are listed in Table 3.
From Table 3 we can see that the required number of Haar-like features decreases with the feature pool growing larger.
This demonstrates the importance of larger feature pool and in particular the usefulness of the non-adjacent Haar-like
features (which, as expected, should be more efficient and more stable in object detection). A few examples of the
selected child-HL features are illustrated in Fig. 7. We can see that the selected features are representative for the
particular annular iris structure. Moreover, it is clear that non-adjacent Haar-like features play a leading role.
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Type of HL Basic Extended Topological
Features (Viola&Jones,2004) (Lienhart&Maydt, 2002) Generalized
Num (]) 581 492 403

Table 3: The required number of features to train a TOBoost detector with Basic, Extended and Generalized Haar-like features.

Figure 7: Illustration of selected Haar-like features by TOBoost algorithm.

4.4. The Effects of the Weak Learner
In this subsection, we evaluate the effects of the weak learner to Adaboost learning. Intuitively, it is desirable for

the weak learner to select the feature that obtain the smallest classification error on the weighted training samples.
To compare the efficiency of different weak learners, Figure 8 shows the ROC curves of the first three component
classifiers selected by different weak learners listed in Table 1. It is clear that the proposed AUC based weak learner
outperforms others by selecting the most discriminative features. This can also be partly demonstrated by the required
number of features when training a detector with different weak learners. Clearly, the smaller the number of features,
the more discriminative the selected feature (i.e. the more efficient of the weak learner). Our experimental results
show that the smallest number is achieved by TOBoost.

4.5. The Generalization Ability of TOBoost

NO.of Pos Discrete AdaBoost Dynamic Cascade TO-
Samples [20] [21] Boost

5000 88.3% 92.5% 94.4%
10000 93.8% 95.6% 96.7%
30000 96.7% 98.1% 99.2%

Table 4: The detection rates of detectors learned on different training sets via different Adaboost algorithms.

To evaluate the generalization ability of TOBoost, we train detectors using training sets of different sizes with
several Adaboost algorithms, and compare their performance on the same test set (with 30,000 iris images). The
detection rate is adopted as an indicator of the generalization ability of the learned detector. The test results are
shown in Table 4. We can see that all detectors become better while the training set growing larger, which clearly
show the importance of large training set for Adaboost learning. Table 4 also shows that TOBoost achieves higher
performance at all training sets and its performance degradation is much smaller than others while the train set growing
smaller. In our opinion, the reasons are two-folds. Firstly, the topology modeling of Haar-like features allows us
to maintain much more negative samples (than the traditional jump-based extraction of negative samples) during
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Figure 8: The ROC curves of the first three component classifiers selected by different weak learners. We can see that AUC immediately minimizes
the classification error.

training and forces the learner to concentrate on the discriminative features of positive samples, which is desirable for
generalization. Secondly, the Gaussian-KDE scheme is capable to incorporate invariance into the training samples,
which also enhances the generalization ability.

Figure 6 gives several illustrations of detection results of the iris detector learned by topology oriented boosting6.
We can see that encouraging performance has been achieved by our TOBoost detector in the presence of various
occlusions, oblique view-angles, etc.

4.6. Further Discussions
From the above descriptions, we can see that there are two key directions for the improvement of Adaboost-

cascade learning. The first direction is to make Adaboost detectors more efficient. This can be achieved by adopting
more discriminative feature sets, more aggressive weak learners and component classifiers. The second direction is to
improve the generalization ability of Adaboost detectors. Being a supervised learning algorithm, Adaboost is rather
aggressive [6, 15] and over-fitting is almost inevitable. However, we can still try to enhance its generalization ability
by several meanings, such as using more training samples or incorporating invariance into the samples via Gaussian
kernel density estimation. As discussed in Sec. 4.2, the topology modeling of Haar-like features is also helpful for a
more stable detector.

Moreover, in practical biometrics applications (e.g. face and iris biometrics), we find that sometimes it is a good
idea to train a moderately good detector. A moderate detector tends to miss some objects that are of low quality, and
therefore avoid possible false alarms due to image quality degradation in biometric applications. Therefore, careful
design of the most desirable detector according to specific applications is also important in practical implementation
of Adaboost-cascade learning.

5. Conclusions

In this paper, we have presented five novel ideas for Adaboost-cascade learning, which enable a more efficient
and stable object detector with fewer features. Firstly, non-adjacent Haar-like features are adopted for efficient object

6Note that the specular spots in these images has been eliminated to keep the iris structure uninterrupted (with the techniques described in [10]).
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representation. Secondly, the Haar-like features are modeled by their topological properties. This topological model
reveals an interesting intrinsic property of Haar-like features (at the first stage), which not only avoids duplicated
computations on negative samples but also enhances the robustness of Adaboost learning. Thirdly, a novel topology
oriented Adaboost algorithm is proposed. TOBoost’s weak learner immediately minimizes the classification error,
enabling the selected features to be more discriminative. Fourthly, a simple and reasonable scheme is presented for
cascade design. Finally, Gaussian-KDE is introduced into Adaboost to enhance its generalization ability. Extensive
experiments in iris detection have shown that the proposed algorithm achieves state-of-the-art performance.

In our future work, we will explore the application of TOBoost in non-cooperative iris recognition systems (e.g.
iris recognition at-a-distance and on-the-move) which involve face and eye detection in addition to iris detection.
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