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Abstract

With the increasing amount of surveillance data, mov-
ing object segmentation in the compressed domain has
drawn broad attention from both academy and industry. In
this paper, we propose a novel moving object segmenta-
tion method towards H.264 compressed surveillance videos.
First, the motion vectors (MV) are accumulated and filtered
to achieve reliable motion information. Second, consider-
ing the spatial and temporal correlations among adjacent
blocks, spatio-temporal Local Binary Pattern (LBP) fea-
tures of MVs are extracted to obtain coarse and initial ob-
ject regions. Finally, a coarse-to-fine segmentation algo-
rithm of boundary modification is conducted based on the
DCT coefficients. The experimental results validate that
the proposed method not only can extract fairly accurate
objects in compressed video, but also has a relatively low
computational complexity.

1. Introduction
Nowadays, large amounts of visual data, especially the

surveillance videos, contain many activities. To further an-

alyze the activities in the surveillance videos, accurate and

automatical moving object segmentation is needed. The

recent object segmentation methods can be conducted in

both the pixel domain and the compressed domain. In

the pixel domain, many efficient algorithms [11] are pro-

posed to achieve accurate pixel-level moving object regions,

which can widely facilitate the high-level applications, such

as video retrieval, video abstraction and video fast brows-

ing. However, most of surveillance videos are transmitted

from surveillance cameras to the data processors in stream

format, resulting in a relatively higher computational com-

plexity of stream decoding for pixel-level algorithms, thus

more and more object segmentation algorithms are intro-

duced to the compressed domain to exploit the information

from compressed video stream directly, which decreases the

time cost efficiently. In the compressed domain, MV and

DCT coefficients are the main information used to segment

the moving objects. Babu et al. [1] used the MV as the

cue to segment moving objects in MPEG. They obtained

a dense MV field through the accumulation and interpola-

tion of MVs, followed by expectation maximization (EM)

algorithm to extract final objects. Zeng et al. [10] used the

sparse MV field to extract the moving object in compressed

video. First, MVs are classified into four types. A Markov

Random Field (MRF) model is then constructed for the

coarse-to-fine segmentation of moving object from back-

ground. To accelerate the processing, a MV quantization

method was proposed and combined with MRF model in

[2][3]. In this method, the MVs are quantized to decide the

parameters of MRF model, including the number of motion

segmentation and the corresponding statistics. After the

coarse segmentation by MRF model, boundary refinement

based on the Y-component is implemented to obtain the

pixel-level result. In the compressed domain, the DCT co-

efficients contain the residual information derived from mo-

tion estimation and motion compensation. Therefore, many

approaches exploited the DCT coefficients to extract the ob-

ject [5][9]. In addition, Poppe et al.[8] introduced a method

only based on the coding size of macroblock (MB) to seg-

ment moving objects in H.264. In this paper, we present a

novel segmentation method to obtain accurate moving ob-

ject regions in 4 × 4 block precision. The proposed method

makes use of MVs and DCT coefficients in the segmenta-

tion process. First, the spatio-temporal correlations among

MVs are measured using LBP feature to conduct a fast and

reliable initial segmentation. Second, the distribution and

value of DCT coefficients are exploited to refine the object

regions. In our method, the spatial and temporal correla-

tion among MVs is extracted for every 4×4 block locally,

which is quantified to LBP value directly. Without heav-

ily computational burden of MRF optimization [10] [2] and
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the over-segmentation or under-segmentation from cluster

algorithms [1] [2], accurate moving object segmentation re-

sults can be achieved with a lower computational complex-

ity in this paper.

The rest of the paper is organized as follows: the flow

chart of our framework is shown in section 2. In section

3, we introduce the initial segmentation method based on

spatio-temporal LBP feature. The details of our moving ob-

ject region refinement procedure based on the DCT coeffi-

cients are presented in section 4. Afterward, the experimen-

tal results are provided in section 5. At last, the conclusions

and future research issues are discussed in section 6.

2. Overview of The Proposed Method

The flow chart of the proposed object segmentation
method is shown in Fig.1. The proposed method consists
of four stages: a) MV field preprocessing; b) Initial object
segmentation based on LBP features; c) Region refinement
based on the distribution of DCT coefficients; d) Object re-
gion projection to I-Frames. Considering that only one I-
frame is generated in our scheme, the projection procedure
will not be introduced in detail in this paper.

Figure 1. Flow chart of proposed object segmentation method.

3. Initial Object Segmentation

3.1. MV Field Preprocessing

In H.264, each macroblock (MB) can be partitioned into

various sizes of blocks, and each block corresponds to a

MV and a reference frame generally. However, since the

coding-oriented criterion, macroblock (MB) in the inter-

frames may be predicted as intra mode (=0) for the ho-

mogeny of adjacent blocks. In this case, MV field may be

sparse and noisy, which decrease the accuracy of object seg-

mentation. Therefore, the MVs of intra blocks in the inter-

frames should be estimated contextually. In our algorithm,

all the 4-adjacent regions of intra blocks are located and de-

noted by R . Then the MBs in region r(r ∈ R) are assigned

with new MVs according to:

MVi =

{
MVμ if size(r) < Is

MVi otherwise
(1)

where MVμ is the average MV of MBs around the region

r. If the size of region r in MB precision is smaller than

a predefined threshold Is, then assign MVμ to all blocks in

region r. After the processing in (1), intra blocks in the inter

frames are endowed with new MVs, which can eliminate

the local sparsity in MV field efficiently. Afterward, the MV

field is sampled in 4×4 block precision to obtain an uniform

MV field for object segmentation. To obtain a more reliable

and dense MV field, the uniform MV field are normalized,

followed by a temporal accumulation and a 3×3 median

filtering [6].

3.2. Initial Object Segmentation

Initial object segmentation is based on the spatio-

temporal LBP feature. In the pixel domain, LBP [7] is a

powerful texture descriptor extracted by comparing neigh-

boring pixel value with the central pixel value. The LBP

at the location (xp, yp) can be derived from the following

formulation:

LBP (xc, yc) =
N−1∑
n=0

s(vn − vc)2
n (2)

where vc is the value of central pixel, vn represents the value
of N neighborhood pixels. s(·) is a sign function defined as
follows:

s(x) =

{
1 if x ≥ τ

0 if x < τ
(3)

where τ is a threshold which is often set to 0. Motivated
by the method proposed in [4], which uses LBP histograms
to detect and extract the moving objects, we introduce a
spatio-temporal LBP in the MV field to obtain a coarse ob-
ject region. Concretely, we combine MV field and block
modes to extract the spatio-temporal LBP feature for each
4×4 block, and then locate the object region by threshold-
ing the value of LBP feature. In our algorithm, LBP feature
is extracted according to the similarity among MVs for the
reason that the MV indicates the moving trend of blocks
in objects, and the MVs are similar in one object region,
whereas are different at the boundary of object regions. The
more similar the MVs are to each other, the more likely the
blocks should be merged to one moving object. To measure
the similarity between two MVs, we introduce a similarity
metric function as following:

S(MVi,MVj) =
MVi ·MVj

max{||MVi||, ||MVj ||}2 (4)

Obviously, in (4), the similarity value between two vec-
tors in (4) ranges from -1 to 1, and -1 represents the com-
pletely difference between two vectors, whereas 1 indicates
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the vectors are completely the same to each other. Specifi-
cally, given the central block and neighboring blocks in the
LBP extraction, the similarity is manually set to be 1 if the
central motion vector MVc is a zero vector, and set to be 0 if
MVc is a non-zero vector yet its neighboring motion vector
MVn is a zero vector. It is formulated as follows:

S(MVc,MVn) =

{
1 if MVc = 0

0 if MVc �= 0 and MVn = 0
(5)

Given the similarity metric function, the LBP bit value can

be derived by thresholding the similarity with a threshold

τ defined in function (3). In our algorithm, the neigh-

boring blocks of each 4×4 block are selected according

to the block modes. Concretely, given a 4×4 block with

corresponding mode, the blocks neighboring the raw block

where it locates are selected, and the block scale is ampli-

fied according the block modes until all the eight neighbor-

ing blocks are located. In our algorithm, the neighboring

blocks are traversed in clockwise order with the top-left

block as the start. Because of different sizes of blocks, the

traversing order is arranged according to the direction point-

ing from the center of central block to the centers of neigh-

boring blocks. As shown in Fig.2, the LBP of the purple

4×4 blocks in the raw 8×4 block is extracted by calculat-

ing the similarity of MVs to their surrounding green blocks.

Having set up the extraction criterion for 4×4 block, the

Figure 2. Comparison of LBP extraction for two neighboring 4×4

blocks: (a): extraction for left-side purple 4×4 block; (b) extrac-

tion for right-side purple 4×4 block. In these examples, τ is set to

be 0.

spatio-temporal LBP feature can be obtained via the com-

bination of the LBP in current frame and that referring to

previous frames. The expression terms in our algorithm are

defined as follows:

Assume bt(x, y) represents the block at the location

(x, y) in the frame t; its MV is denoted by MVt(x, y), and

its LBP feature in current frame t referring to the frame tp
is denoted by LBP

tp
t (x, y); here, the frame distance from

current frame to the previous frame is no larger than a posi-

tive const T , that is,(t− tp) ∈ [0, T ]. To achieve the spatio-

temporal LBP of block bt(x, y), the derivation of LBP of

bt(x, y) referring to the frame tp, (t − tp) ∈ [0, T ], can be

partitioned to three steps: a) project the MV of bt(x, y) to

its corresponding location (x, y) in the frame tp, denoted by

MV ′tp(x, y); b) modify the motion vector MVtp(x, y) using

the function:

M̂V tp(x, y) = ωMV ′tp(x, y) + (1− ω)MVtp(x, y) (6)

where ω is a weight ranging from 0 to 1; afterward, c) cal-

culate LBP
tp
t (x, y) referring to MV field of frame tp with

the central MV is M̂V tp(x, y).

Figure 3. Spatio-temporal LBP feature extraction based on block

modes. The number in the blue blocks represents the traversing

order.

As shown in Fig.3, the purple 4×4 block has different

neighboring blocks between the frame t and tp because the

block modes distribution is different. When the three steps

are accomplished, the LBP feature set of bt(x, y) referring

to the current frame and all the previous T frames can be

achieved, and denoted by:

{LBP t
t (x, y), LBP t−1

t (x, y), ..., LBP t−T
t (x, y)} (7)

After extracting LBP feature set for one block by (7), the

feature fusion is necessary to obtain the spatio-temporal

LBP feature to decide whether the block is a foreground

block or not. In this paper, we propose a simple yet efficient

method to fuse the LBP feature. It is defined as follows:

STLBPt(x, y) = ∪T
c=0LBP t−c

t (x, y) (8)

where ∪ is an operator on each bit of LBP features. It out-

puts 1 when the number of ’1’ in corresponding bit of LBP

features is more than that of ’0’, otherwise, outputs 0. Af-

terward, we convert the preliminary LBP from (8) to rota-

tion invariant LBP by cyclic shifting of the 8-bits until get

the minimum value. In this case, the LBP values in each

previous frame vote for the decision on the LBP values of

the current frame, which improves the robustness of LBP

extraction. Without explicit illustration, all mentioned LBP

features in the following part are rotation invariant LBP fea-

tures. After obtaining the fused LBP feature for one block,

the next work is to classify the block into a foreground block

or a background block.

For a static scene, many blocks have a zero MV, resulting

in a very sparse MV field. In such a field, the higher values

of LBP features are more likely to appear in the background

region and the regions inside the moving objects, while the

lower values are supposed to locate in the boundary of mov-

ing objects according to (3)-(5). Likewise, as for a dynamic
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scene, since the background blocks have a similar global

motion, the distribution of LBP features in the dynamic sit-

uation is similar to that in the static scene. After extracting

the LBP feature of all blocks, LBP image is constructed for

object segmentation.

Figure 4. LBP image of sequence Hall Monitor. The first column

is input frame; the second is the 4×4 block-level ground truth; the

third is the corresponding object mask; the last column is the LBP

features of image.

The extracted spatio-temporal LBP features of image is
shown in Fig.4. As we can see, the LBP value of blocks
inside the moving object and in the background is higher,
whereas the LBP value of boundary blocks is much lower
because of the dissimilarity among the blocks. Therefore,
we first conduct a simple Gaussian smooth to the LBP im-
age, then the foreground blocks can be labeled according to
the following function:

Mt(x, y) =

{
1 if LBPt(x, y) ≤ Ths

0 otherwise
(9)

In (9), the block bt(x, y) is labeled as a foreground block if

the LBP is no larger than Ths, otherwise, it is labeled as a

background block. In the LBP image, since the blocks in-

side object regions may be classified as background blocks

by (9), the misclassified blocks inside object regions are

converted to be foreground, and whose LBP values are as-

signed with zero.

4. Coarse-to-Fine Object Segmentation
After all the blocks in one frame are labeled according to

the LBP image, the DCT coefficients are introduced to re-

fine the coarse object region. In H.264, the DCT coefficients

are used to code the residuals of the motion compensation,

and larger DCT coefficients are more likely to appear at the

boundary of object region. Therefore, the DCT coefficients

can provide reliable cues for the refinement. In our algo-

rithm, DCT coefficients in one frame are first temporally

accumulated for several frames, then, the sum of DCT co-

efficients (SDCT) in each 4×4 block is calculated, followed

by normalization to a value ranging from 0 to 255. After-

ward, a modification algorithm is conducted to re-label the

blocks in the contour of object regions based on the LBP

image and SDCTs.

In the refining algorithm, we first locate the contour

blocks of object region r in t-th frame, all the blocks in ob-

ject region are scanned, and the blocks whose neighboring

blocks include one or more background blocks are pushed

into the block set, which is denoted by C(t, r). Then the

posterior probability of being a foreground block or back-

ground block for each contour block in C(t, r) is calculated

according to its LBP value and the location with respect to

the distribution of SDCTs in one frame, defined as follows:

P (C|F ) = P (C|LBP,L0) (10)

Assuming the independence between LBP image and SD-

CTs, the formulation (10) can be transformed to:

P (C|F ) ∝ P (C)P (LBP |C)P (L0|C) (11)

Given the function (11), the re-labeling of contour blocks
can be regarded as Maximum a Posterior (MAP) estima-
tion. To reduce the computation cost, the posterior proba-
bility of being a background block for contour block is set
to be a const value in our algorithm, denoted by Pb. There-
fore, MAP estimation can be simplified to be a thresholding
problem. If the posterior probability P (Fg|F ) is less than
Pb, the block is re-labeled as background block. To sim-
plify the procedure, the prior probability P (Fg) is regarded
as a const, which is set to be 0.8 empirically in our algo-
rithm. In (11),P (LBP |Fg) is calculated for each contour
block by considering the 4-adjacent neighboring blocks. It
is expressed as:

P (LBPt(x, y)|FG) =

{
1 if LBPt(x, y) < αμ

Φ(LBPt(x, y)) otherwise

(12)

where LBPt(x, y) is the spatio-temporal LBP value of con-
tour block bt(x, y). Φ(·) is the Gaussian probability density
function, whose mean is the average LBP value of contour
blocks in C(t, r), denoted by μ, and the corresponding vari-
ance of LBP features is denoted by σ2. In this function, if
the LBP value is smaller than a threshold αμ (in our algo-
rithm, α is set to 1.2), the probability is set to 1; otherwise,
calculate the probability using Φ(·). Meanwhile, the prob-
ability P (L0|Fg) for one contour block given the distribu-
tion of non-zero SDCTs is calculated by:

P (L0|Fg) =

∑M
i=1 St(xi, yi)K(||L0 − Li||2)∑M

i=1 St(xi, yi)
(13)

where St(xi, yi) is non-zero SDCT of block bt(xi, yi),
whose 4×4 block-level coordinate is denoted by Li. The

Gaussian kernel function K(·) is utilized to estimate the

likehood of being a foreground block for bt(x0, y0). In ad-

dition, a window whose size is the same as the bounding

box of current object region is implemented to restrict the

bandwidth of K(·). After all the contour blocks of object

region r are re-labeled, the contour set C(t, r) is updated

and the parameters of Φ(·), including μ and σ2 are updated

as well. Started with the initial object region, the refine-

ment procedure repeats until the contour set C(t, r) is un-

changing. Upon completion, a more accurate object region

is obtained. The coarse-to fine segmentation results of LBP

image shown in Fig.4 are presented in Fig.5.
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Figure 5. Object region refinement. The first column is input frame

from Hall Monitor; the second is the 4×4 block-level ground

truth; the third is the distribution of SDCTs; the last column is

the final segmentation result.

5. Experimental Results

In this section, the performance of our method is eval-

uated on three standard test sequences: Hall Monitor (300

frames), Daytime (first 1000 frames) and Table tennis (112

frames). In our experiment, all the coding and decod-

ing tasks are conducted according to the H.264 standard,

and the edition number of the core encoder and decoder is

JM12.4. All the test sequences are IPPP coded with the

quantization parameter (QP) equal to 30, and only the first

frame are code as I-frame. The MV search range is [-32,

32]. All the experiments are performed on a desktop com-

puter with Intel Core i5, CPU 2.67 GHz, 2G RAM, and Mi-

crosoft Windows XP Professional. The parameters in our

algorithm are set as: Is = 10, τ = 0.5, T = 3, ω = 1,

Ths = 80, Pb = 0.3.

Figure 6. Comparison of segmentation performance, row one Hall
Monitor (frame 87); row two: Daytime (frame 221); row three:

Table tennis (frame 10).

In the experiment, the segmentation results of our algo-

rithm is 4×4 block-level,and the 4×4 block-level ground

truth in this paper is labeled manually. Concretely, the block

that covers one or more foreground pixels in the pixel-level

ground truth is labelled as a foreground block. To give a fair

comparison, we conduct the algorithm in [2] based on the

4×4 block precision without further process of boundary

refinement. The segmentation results of three methods are

compared in Fig.6. In Fig.6, the first column shows orig-

inal frames from the test sequences, and the second col-

umn presents the 4×4 block-level ground truth for these

frames. The third column shows the segmentation results

from [10]. The segmentation results of [2] are presented

in the fourth column. And the segmentation results by the

proposed method are shown in the last column.

To make a persuasive comparison, two metrics, preci-
sion (P) and recall (R) are used to quantify the performance
of the proposed method and the other two methods on the
test sequences with the 4×4 block-level ground truth. In
addition, we use F-measure to evaluate the equilibrium be-
tween precision and recall as [2]. At this point, we select
many frames from three sequences, that is, one frame from
every five frames for the sequence Hall Monitor (interval:
20-300); one frame from every ten frames for Daytime (in-
terval: frames with car); first 21 frames and last 29 frames
for Table tennis.

Table 1. Average performance for three sequences

Sequence Method P R F-measure

Hall Monitor
Proposed 0.72 0.84 0.78

Ref.[10] 0.60 0.84 0.70

Ref.[2] 0.57 0.73 0.64

Daytime
Proposed 0.62 0.68 0.65

Ref.[10] 0.45 0.60 0.51

Ref.[2] 0.40 0.86 0.63

Table tennis
Proposed 0.86 0.85 0.85

Ref.[10] 0.85 0.69 0.76

Ref.[2] 0.77 0.75 0.76

The quantitative curves are shown in Fig.7 (blue: Preci-

sion, red: Recall, green: F-measure). In the first row, the al-

gorithm in [10] obtains a temporally stable but slightly poor

segmentation results. In the second row, though the recall of

segmentation results from the method [2] is higher than the

others, a much lower precision and F-measure occur to all

the three sequences, which is not applicable to the require-

ment of accurate segmentation of surveillance videos. In

contrast, the proposed method not only achieves higher pre-

cision and recall, but also keeps the balance between them

towards all the test sequences. In Table 1, the comparison

of average quantitative also proves that the segmentation re-

sults from this paper are more accurate than the other two

methods. Since the coarse classification of MV is merely

based on rigid thresholding, the segmentation result in [10]

is not robust to the variety of MV field. In [2], without con-

sidering the spatio-temporal correlations among blocks, the

segmentation results are scattered and fragmented, mean-

while, false estimation of the number of MRF classes is of-

ten occurred in their work, resulting in over-segmentation

or under-segmentation in many cases. Since the exploiting

of LBP, the proposed algorithm enjoys a lower computa-

tional complexity. Moreover, to further accelerate the speed

of the algorithm, we introduced a pre-selection method to

locate the regions where the LBP features should be ex-

tracted. Concretely, a larger scale (16×16 or 32×32) ac-

cumulating of MVs is conducted to decide the candidate

regions of moving objects. The average processing time per

frame is 68 ms for the three sequences.
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Figure 7. Performance evaluation of three sequences: Hall Monitor, Daytime, Table tennis (from left to right). The first row is the

quantitative curve of method in [10]; the middle one is from the method in [2]; the last row is the segmentation results of the proposed

method.

6. Conclusions
In this paper, a novel object segmentation method is pre-

sented and discussed. The spatio-temporal LBP is intro-

duced to extract the coarse moving objects in the H.264

compression domain, followed by a region refinement ac-

cording to the distribution of DCT coefficients. As the ex-

periments show, the algorithm provides a reliable and accu-

rate segmentation results compared with the previous meth-

ods.
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