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Abstract

People counting is one of the key components in video
surveillance applications, however, due to occlusion, illu-
mination, color and texture variation, the problem is far
from being solved. Different from traditional visible cam-
era based systems, we construct a novel system that uses
vertical Kinect sensor for people counting, where the depth
information is used to remove the affect of the appearance
variation. Since the head is always closer to the Kinect sen-
sor than other parts of the body, people counting task equals
to find the suitable local minimum regions. According to the
particularity of the depth map, we propose a novel unsuper-
vised water filling method that can find these regions with
the property of robustness, locality and scale-invariance.
Experimental comparisons with mean shift and random for-
est on two databases validate the superiority of our water
filling algorithm in people counting.

1. Introduction
People counting has been a key component in video

surveillance applications such as people flow monitoring

and tourists flow estimation. Previous methods of people

counting based on visible light images or videos can be

grouped as following: counting by detection, counting by

regression and unsupervised tracker.

The most convenient approach is counting by detection,

where multi-scale windows slide over the whole image and

a binary classifier is adopted to determine whether there is a

people within the window [10, 21]. Once we have detection

results, the counting problem is solved naturally. However,

there are two unsolved problems in object detection. First-

ly, one object may correspond to different bounding box-

es and currently the commonly used NMS(non-maximum

suppression)[13, 11] tends to become invalid in complex

situation where multiple people have interactions with each

other. Secondly, some objects may be partially or even
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Figure 1. Overview of our people counting system. We place the

Kinect on the ceiling and pointing to floor. Right-up and Right-

down image are RGB and depth image generated by Kinect sensor

respectively. In our system, depth information is used to achieve

appearance invariant.

wholly occluded so that they are too difficult to be detected.

Both of the two problems affect the counting performance.

Instead of solving the difficult detection problem, count-

ing by regression methods solves the counting problem di-

rectly. Most of the algorithms use regression techniques to

learn a map between features and the number of people in

the training set and then use the map to estimate the num-

ber of people in novel test images or videos [7, 14, 16, 12].

In [5], Gaussian process is used to learn the map between

holistic features and the number of people, and in [6] a

Bayesian Gaussian process is further proposed to improve

the performance. A discriminative training framework is

proposed in [15] and the counting people equals to integrate

over the foreground region. These methods take the count-

ing problem as a black box. Although many methods have

been proposed to increase the generalization capability, the

performance always depends on the training instances, and

labeling a lot of training instances is time consuming.
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To avoid reliance on the training instances, some unsu-

pervised methods have been proposed. These methods use

point tracker to track visual features and then cluster the

trajectories. Under the independent assumption, the num-

ber of cluster centers is taken as the number of people. In

[17], KLT tracker and agglomerative clustering were used.

An unsupervised Bayesian approach was further proposed

in [4]. However, the basic assumption does not always hold

since that one people may have large actions that results in

two clustered trajectories and some people may passed to-

gether that results in a single trajectory.

The three approaches can achieve some success in spe-

cific situations. However, due to the occlusion, variation

of illumination, color and texture, the problem is far from

being solved in various applications.

Refs. [2, 20] reported the use of vertical Time-of-Flight

depth sensor to detect and track people. Our Kinect sen-

sor is cheaper and high-precision, and the algorithms they

proposed are different with ours.

In this paper, we adopt vertical camera since occlusion

problem is naturally solved in the view of vertical camer-

a [1]. On the other hand, we apply the Kinect sensor for

people counting. By using the structural light technique,

Kinect sensor [9] gives the calibrated depth information of

every pixel and this information is illumination, color and

texture invariant. The sensor was firstly used in [18] and

achieved surprising result on human pose estimation. Since

the heads are always closer to the camera than other part

of the body in the view of vertical Kinect sensor, detecting

people’s head equals to finding the suitable local minimum

regions in the depth image. The system is illustrated in Fig-

ure 1.

The vertical depth information generated by Kinect sen-

sor can simplify the people counting problem, but there are

still problems in real application. This is because people in

the same scene may have various scales or depth informa-

tion, and the crowded people will make a complex depth

map with multiple local extremum. Besides, the raw 3D da-

ta from Kinect sensor have a lot of noises, which makes the

depth map to be discontinuous. So it is difficult to achieve

good performance with the traditional clustering method

such as mean shift or watershed segmentation, which is sen-

sitive to the threshold and easily falls into the local optimum

caused by the noise. In this paper, we propose a novel algo-

rithm that can effectively find local minimum regions with

the advantage of locality, scale-invariance and robustness.

Our algorithm is motivated by the water filling process, that

the water moves away from the heave and out to the near-

by hollow under the force of gravity until the gravitational

potential energy can’t be reduced any more. We simulate

the rain by generating the raindrop according to a uniform

distribution. Once a raindrop arrives, we compare its land-

ing spot with its neighborhood and find the descent direc-

tion until it can’t descend any more, then the the number

of raindrop at the balance spot increases. Since most of the

raindrop at nearby landing spot tend to flow to the same hol-

low, we further propose a fast algorithm that speed up the

process.

The rest of the paper is organized as follows: Section 2

gives an overview of our system and the people detection

model corresponding to the system. Our water filling in-

ference algorithm is discussed in Section 3. Experiments

are given in Section 4 and finally in Section 5, we give our

conclusion.

2. Problem Formulation
We take the depth image as a function f , where f(x, y)

stands for the depth information of pixel (x, y). Due to
the noise of Kinect sensor, f(x, y) can be non-derivable or
even discontinuous. Finding people in depth image equals

to finding local minimum regions in f . Mathematically, the
problem can be defined as finding the region A and N that

satisfy the following constraint:

EA(f(x, y)) + η ≤ EN\A(f(x, y)) (1)

where A ∈ N , A is the local region and N is its neighbor-

hood. E(·) is an operation to pool the depth information in
the region to a real value that reflects the total depth infor-

mation in the region. η is a pre-defined threshold to ensure
that depth in A should lower than N\A with a margin.
Note that A andN can be of arbitrary shape, and finding

all the regions in image can be very time consuming. In the

following, we will give our water filling algorithm that can

effectively find all the suitable regions.

3. Inference via Water Filling
In order to solve the problem effectively and be robust to

noise, we introduce an additional measure function g(x, y)
to “measure” f(x, y). Mathematically, g(x, y) is defined as:

Definition 1 g(x, y) is a measure function of f(x, y) if and
only if ∃ε > 0, ∀(x1, y1), (x2, x2), s.t. ‖(x1−x2)

2+(y1−
y2)

2‖ < ε, if f(x1, y1) ≤ f(x2, y2),

f(x1, y1) + g(x1, y1) ≤ f(x2, y2) + g(x2, y2)

g(x1, y1) ≥ g(x2, y2)

g(x1, y1) ≥ 0, g(x2, y2) ≥ 0

The form of g(x, y) can be trivial for example a zero
function. We expect to use g(x, y) to infer the f(x, y). A
proper function g(x, y) can have the following three advan-
tages:

1. Robustness. The raw depth data of Kinect sensor con-
tains a lot of noises, and some of the regions may have
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(a) f(x, y): original depth image.

(b) f(x, y) + g(x, y): result of water filling.

(c) g(x, y): measure function

Figure 2. Illumination of Water Filling. A,B,C correspond to three

people respectively and D is a noise region. Region A has smaller

scale compared with B and C, and the absolute hight of A is larger

than noise region D. After the water filling process, we get the

measure function g(x, y) which reflects the property of f(x, y).
Finally the people can be detected by a simple threshold operation

on measure function g(x, y).

no depth information, we want to make g(x, y) to be
handle this kind of noise.

2. Locality. There may be a lot of people in the scene,
and different people may have different heights for

example adult and kid. To detect people in different

heights, the method should have locality property that

not influenced by other regions.

3. Scale-Invariance. People’s head in the view of Kinect
sensor may be of different scales, large or small, the

function g(x, y) should be scale-invariant so that it can
detect the head region at any scale.

We don’t need to get a general solution of g(x, y), in-
stead we only need to get a proper non-trivial form of

g(x, y). Inspired by the water filling process, we proposed
a novel algorithm that can find the proper g(x, y) effective-
ly. The form of function f(x, y) can be seen as a land with
humps and hollows. The raindrop in the hump will flow

directly to the neighborhood hollow under force of gravity.

Little by little, the hollow region will gather a lot of rain-

drops. The function g(x, y) reflects the quantity of raindrop
at (x, y). After the rain stops, the regions with a lot of rain
drop can be classified as a hollow.

Our algorithm can be seen as the simulation of the above

process. However, there are two problems in simulating the

process: one is that, the quantity of raindrop is a contin-

uous value; the other one is that, different raindrops may

reach the land simultaneously, their interaction is hard to

simulate. In our algorithm we make the following simpli-

fications: 1. every raindrop has the same quantity and the

land is discrete; 2. every raindrop reach the land in a order,

so that no interaction between two raindrops exists. The

detail of the algorithm is shown in Algorithm 1.

Algorithm 1 Inference via Water Filling
1: Input:
depth image: f(x, y) and measure function g(x, y) =
0, with the size ofM ×N , the threshold T , number of
raindropsK.

2: for k=1:K do
3: x = rand(1,M), y = rand(1, N)
4: while True do
5: d(xn, yn) = f(xn, yn) + g(yn, yn) − (f(x, y) +

g(x, y)), where (xn, yn) is the neighborhood of
(x, y).

6: (x′, y′) = argmin d(xn, yn)
7: if d(x′, y′) < 0 then
8: x = x′, y = y′;
9: else
10: g(x, y) = g(x, y) + 1;

break;

11: end if
12: end while
13: end for
14: Threshold on g(x, y)with T , and then use contour anal-
ysis to find contours and every contour corresponding

to a people.

15: Output: bounding boxes of contours.

The total number of raindrops K is set to be tMN ,
where t is usually set to be 100. At every loop, (x, y) is
randomly generated through a discrete uniform distribution.

If there is a point (x′, y′) in the neighborhood of (x, y) that
satisfies f(x′, y′) + g(x′, y′) < f(x, y) + g(x, y) then the
raindrop in (x, y) flows directly to (x′, y′) and start another
loop until a local minimum is reached. When local mini-

mum is reached, supposing the point is (x0, y0), the mea-
sure function g(x0, y0) = g(x0, y0) + 1. Since one pixel
can only be traveled once for a raindrop, the algorithm can

be terminated in finite steps. After all the K raindrops find

their stable place, we get the final measure function g(x, y).
Due to the locality, robustness, and scale-invariance proper-

ty, we can use thresholding and contour analysis operation

on g(x, y). Besides, the value of f(x, y) in the shoulder is
always higher than head, so the drops in the shoulder will

find their way to the nearest head region, that make sure

there are more drops in the head region than others. The

final contours are taken as people (see Figure 2).
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Table 1. Experimental Results

Methods data Supervised Accuracy Recall Rate F-score

Mean shift Depth image No 0.5067 0.8909 0.6460

Random Forest Depth image Yes 0.9105 0.8387 0.8731

Water Filling Depth image No 0.9916 0.9842 0.9879

Table 2. Generalization Capability on two dataset

Dataset1 Dataset2

Method Recall Accuracy F-score Recall Accuracy F-score

Random Forest 0.9105 0.8387 0.8731 0.8759 0.8184 0.8462

Water Filling 0.9882 0.9883 0.9879 0.9947 0.9957 0.9952

3.1. Fast Water Filling

The speed of the proposed water filling algorithm dis-

cussed in Algorithm. 1 depends on the number of raindrop

which limits the speed in practical applications. In this part,

we propose a fast algorithm that can use relatively less rain-

drops. Our motivation is directly perceived through the

sense: raindrops at the neighborhood spot tend to flow to

same local minimum regions.

The detailed algorithm is shown in Algorithm 2. Instead

of assuming that one raindrop takes one unit water, we make

one raindrop take R unit water, where R can usually very
big for example 100. In this way, only K ′ = K/R rain-
drop is needed to provide the same amount of water thus

the number of outer loop is reduced. In the inner loop, the

algorithm find regions that lower than its region with a mar-

gin r, and then fill the region with r water, where r can be
arbitrary value in [0, R]. The number of r plays a key role
in the algorithm: if r is too big, the algorithm is fast, but the
measure function g(x, y) is not fine enough to reflect the
property of f(x, y); if r is too small, the algorithm is slow
and sensitive to noise. Since Algorithm. 2 is faster than Al-

gorithm. 1 with a margin and achieves similar performance,

in the following experiment, we will only use Algorithm 2.

4. Experiment
In this part, we conduct experiments to validate the su-

periority of proposed vertical Kinect based system and the

water filling method in people counting. We compare the

detection performance with other state-of-the-art methods,

and then we add a tracking module to validate the counting

performance.

In order to remove the influence of background, we use

GMM(Gaussian Mixture Model) based background model-

ing [19] as preprocessing and in the following experiment

we only operate on foreground regions. In our experiment

we collect two datasets in two different scenes. The dataset

1 includes 2834 images with 4541 heads and the dataset 2

includes 1500 images with 1553 heads.

We use three measurements to compare the performance:

recall rate, accuracy and F-score, where recall rate is the

Algorithm 2 Patch based Water Filling
1: Input:
depth image: f(x, y) and measure function g(x, y) =
0, with the size of M × N , the threshold T , number
of raindrops K ′, amount of water in one raindrop R,
amount of water dropped one time r.

2: for k = 1 : K ′ do
3: x = rand(1,M), y = rand(1, N), w = R
4: while w > 0 do
5: d(xn, yn) = f(xn, yn) + g(yn, yn) − (f(x, y) +

g(x, y)), where (xn, yn) is the neighborhood of
(x, y).

6: (x′, y′) = argmin d(xn, yn)
7: if d(x′, y′) + r < 0 then
8: x = x′, y = y′;
9: else
10: g(x, y) = g(x, y) +min(r, w), w = w − r;
11: end if
12: end while
13: end for
14: Threshold on g(x, y)with T , and then use contour anal-
ysis to find contours and every contour corresponding

to a people.

15: Output: bounding boxes of contours.

fraction of people that are detected; accuracy is the fraction

of detected result that are people, and F-score is the tradeoff

between recall rate and accuracy.

4.1. Experiment on Detection

Since our counting method is based on detection, we

firstly compare the performance of our proposed water fill-

ing method with the following state-of-the art detection

methods:

Mean ShiftWe use mean shift algorithm [8] to seek the
local minimum on depth image. The scale of window is

determined according to cross-validation.

Random ForestWe use the framework proposed in [18]
where depth comparison features and random forest [3]
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classifier are used. Similar to [18], we set the number of

trees to be 3, and the depth of every tree is set to be 20. For

pooling the test result, we use the mean shift clustering.

The experiment is conducted on dataset1. For supervised

method, we use the first 1000 image for training and for un-

supervised method, we use the first 1000 images for cross

validation, the other images are used for test. The experi-

mental results are shown in Table. 1. From Table. 1 we can

find that our algorithm outperforms the other two methods.

By analyzing the detection results we find the random for-

est algorithm always fails when multiple people in the scene

while mean shift algorithm tends to be sensitive to noise and

cannot detect the children. Our proposed water filling algo-

rithm perform very well on both the two situations.

4.2. Experiment on Generalization Capability

To test the generalization capability, we further conduct

experiments on dataset2 which is from another scene. We

use the model and parameter selected from dataset1. The

detection results on dataset2 are shown in Table. 2. Ran-

dom Forest based method can achieves good performance

on the same scenes, but its performance drops on this novel

scene. From this experiment, we can find that our water fill-

ing method have better generalization capability since that

it doesn’t rely on the training data.

4.3. Experiment on Parameter Selection

The amount of water dropped one time (r in Algorith-
m. 2) controls the ”smoothness” of measure function, and

plays a key role in the algorithm. In this part, we try to ex-

amine the impact of this parameter. We conduct experiment

on two databases to validate the robustness of the the pa-

rameter selection. In all experiment, we set the threshold T

as 2 and compare a point with its nearest eight points. The

results are shown in Figure 3.

From the experiment we can find that our algorithm is ro-

bust since that it achieves relatively good performance when

the parameter is selected in the range [11, 61]. In the inter-
val the F-score are all above 0.98, which is high enough in

practical applications.

4.4. Experiment on People Counting

Since our people detector achieves high accuracy, we can

use relatively simple tracking algorithms for people count-

ing. In our system we add a simple nearest neighborhood

multiple-target tracking module to the system to get the tra-

jectory of every people and then to count the number. The

counting accuracy on dataset2 is shown in Table. 3.

All tested algorithms were implemented in C++, and cur-

rently runs at 20 frames per second on a standard PC with

Inter Core2 E7500 CPU with 4.0 G memory, and the frame

size is 320 × 240. The speed of the water filling algorith-

0.9

0.92

0.94

0.96

0.98

1

1 11 21 31 41 51 61 71 81 91

F-
Sc

or
e

Amount of water dropped one time

Dataset1

Dataset2

Figure 3. The relationship between the amount of water dropped

one time and the F-Score

Table 3. Counting Accuracy on Dataset 2

Dataset 1 In Out Total

Ground Truth 180 30 210

Water Filling 179 30 209

Accuracy 99.44% 100.00% 99.72%

m, is about 30 frames per second. Some examples of the

detection and counting results are shown in Figure 4 and

Figure 5.

5. Conclusion
In this paper, we construct a novel people counting sys-

tem via vertical Kinect sensor which is robust to appear-

ance variations. In the view of vertical Kinect sensor, peo-

ple counting problem equals to finding the local minimum

regions. We propose a heuristic search method that can find

these regions and give an patch based version that runs at

real time. Experimental comparison with other two algo-

rithms validates the superiority of proposed novel system

and water filling inference algorithm, even in the crowed

scene and children detection. However, according to the

limitation of the algorithm, the water filling cannot handle

the situation where some moving object is closer to the sen-

sor than head, such as raising hands over head. In our fu-

ture work, we will consider to fuse the information of multi-

Kinect sensors to cover more large horizon.
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(a) RGB Image (b) Depth Image after background

modeling

(c) Water Filling Result (d) Detection at Counting Result

Figure 4. Detection and Counting Result. in this frame, all the seven persons are detected.

(a) RGB Image (b) Depth Image after background

modeling

(c) Water Filling Result (d) Detection at Counting Result

Figure 5. Detection and Counting Result. There are six people in the scene, while only five people detected. One people is missed since

that it is partly outside the view.
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