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Abstract

Recent state-of-the-art algorithms have achieved good
performance on normal pedestrian detection tasks. How-
ever, pedestrian detection in crowded scenes is still chal-
lenging due to the significant appearance variation caused
by heavy occlusions and complex spatial interactions. In
this paper we propose a unified probabilistic framework to
globally describe multiple pedestrians in crowded scenes
in terms of appearance and spatial interaction. We utilize
a mixture model, where every pedestrian is assumed in a
special subclass and described by the sub-model. Scores
of pedestrian parts are used to represent appearance and
quadratic kernel is used to represent relative spatial inter-
action. For efficient inference, multi-pedestrian detection is
modeled as a MAP problem and we utilize greedy algorith-
m to get an approximation. For discriminative parameter
learning, we formulate it as a learning to rank problem,
and propose Latent Rank SVM for learning from weakly la-
beled data. Experiments on various databases validate the
effectiveness of the proposed approach.

1. Introduction

Pedestrian detection in real-world scenes is a crucial
component for a variety of applications, such as video
surveillance and drive-assistance systems, and robust pedes-
trian detection can also be used to improve the perfor-
mance of other components such as pedestrian tracking.
Recent pedestrian detection algorithms [4, 5] can achieve
good performance on normal scenes, but their performance
in crowded scenes are far from being satisfactory due to
the ambiguous appearance caused by heavy occlusions and
complex spatial relationship between different pedestrians.

Traditional template pedestrian detection methods [17,
3] always work as follows. Given an image, multi-scale
windows slide over the whole image and a binary classi-
fier is adopted to determine whether there is a pedestrian
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within the window. Since one pedestrian is usually bound-
ed by different windows, non-maxima suppression (NMS)
[14, 10] is often adopted to reconcile the overlap detection-
s according to an overlap criterion. There are at least two
shortcomings for these methods in crowded scenes. First-
ly, the appearance of pedestrians varies a lot because of the
severe occlusions thereby the single binary classifier is d-
ifficult to detect all the pedestrians correctly. Secondly, in
crowded scenes, multiple pedestrians are usually very close
with each other and they are not independent to some extent,
therefore the fixed threshold used in NMS may not work.

To find the global optimal solution of multiple pedes-
trians layout in the entire image, we relax the independent
assumption and model both the appearance and spatial in-
teraction. We propose a probabilistic model to explore the
relationship between the two clues, and multi-pedestrian de-
tection is formulated as a maximizing a posteriori (MAP)
problem. To better model the complex appearance and s-
patial relationship in crowded scenes, we utilize a mix-
ture model with several subclasses which are automatical-
ly learned from the weakly labeled data. Every pedestrian
is assumed in a special subclass and described by the sub-
model. The appearance model is built on Felzenszwalb’s
part based model[10], where the scores of parts are used as
a second level feature representation and every subclass has
a weight vector to describe the importance of different part-
s. The spatial model is used to describe the interactions and
in our model quadratic kernel[11] is used.

Since finding the global optimal solution in the model is
impossible, a greedy approximate algorithm is used to effi-
ciently infer the best hypothesis. For discriminative learn-
ing, we formulate the parameter estimation problem as a
learning to rank problem [13] where we aim to find an op-
timal model that can generate higher score for the ground-
truth layout than any other hypothesis. To handle the con-
straints of the exponential order, we use a data mining hard
samples approach to efficiently solve the problem similar
to [10] . In real world practice, we only have weakly la-
beled locations of pedestrians and don’t have access to the
subclass annotations, therefore, we take the subclass label
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latent variable and propose Latent Rank SVM to simultane-
ously learn the model’s parameter and latent subclass label.

The rest of the paper is organized as follows: Section 2
reviews the related work. Our probabilistic model in terms
of appearance and spatial interaction is discussed in Section
3. Section 4 gives the optimization techniques for model
learning and inference. Section 5 shows the experiments
and finally in Section 6 we conclude the paper.

2. Related Work
The most popular pedestrian detection method is tem-

plate based method, which uses a pre-trained classifiers to
scan images in possible locations and scales to determine
whether the window contain a pedestrian or not. The per-
formance of the method benefits from low level features and
training methods. In [17], Haar feature and boosting clas-
sifier were used, and in [3], HOG (Histogram of Gradien-
t) feature and SVM classifier were used. Further improve-
ments include [19, 6, 5, 10, 20, 18] and so on, where novel
features or more powerful classifiers were utilized . A more
detailed survey of these methods can be found in [7].

Compared with traditional pedestrian detection, there are
few papers aiming on multi-pedestrian detection in crowd-
ed scenes despite its importance in real applications. [15]
extended the implicit shape model(ISM)[14] by using both
local and global information to segment different pedestri-
ans. [1] avoided NMS by reproducing the ISM model and
transform it into an energy maximization problem. Anoth-
er related paper is [4], which explored spatial relationship
between multi-class objects and formulated it as an ener-
gy maximization problem. Compared with [4], we aim at
a different but more challenging problem and use different
techniques in model, representation, learning and inference.

3. Model
In this part, we propose a unified probabilistic model to

describe multiple pedestrians in crowded scenes in terms of
appearance and pairwise interactions, and then the pedestri-
an detection task is formulated as an energy maximization
problem. Firstly the model formulations are given, and then
we discuss the feature representation.

3.1. Formulation

Given an image I and a search strategy, the collec-
tion of possible bounding boxes is denoted as B =
{b1, b2, · · · , bN}, where N is the total number, bi is the ith
bounding box with center (xi, yi) and scale si. The label
of bi is written as ti, where ti = 1 if bi is corresponding to
a pedestrian and otherwise ti = 0. The model of pedestri-
ans in crowded scenes is Fθ parameter θ = (θa, θs), where
θa and θs are used to model appearance and spatial rela-
tionship respectively. The detection task is to infer labels

of bi in B, and we call the detection result a hypothesis as
T = {t1, t2, · · · , tN}. Given an image I and model Fθ, the
pedestrian detection task is equal to finding a hypothesis T
that maximizes the probability P (T |I, θ). Using the Bayes
rule, we can get:

arg max
T

P (T |I, θ) ∝ arg max
T

P (I|T, θ)P (T |θ) (1)

where p(I|T, θ) describes the appearance model, and it
measures the likelihood of seeing a particular image giv-
en hypothesis T and model Fθ; P (T |θ) is the prior term.
Similar to [12], where the prior is used to model the relative
position of body parts, here we use the prior term to model
the relative spatial interaction between different pedestrians
in the hypothesis T .

In the appearance model, the appearance likelihood of bi
in B are assumed to be independently and identically dis-
tributed, so the likelihood term P (I|T, θ) can be decom-
posed as:

P (I|T, θ) ≈
N∏
i=1

p(Ibi |T, θa) =
N∏
i=1

p(Ibi |ti, θa) (2)

where Ibi is the image region located at bi. The right equa-
tion is satisfied since that p(Ibi |T, θ) is only dependent with
ti and is independent with tj , where j 6= i.

In the spatial interaction model, for simplicity we take
pairwise interactions as our basic element and high order in-
teraction are built indirectly through these pairwise interac-
tions. The pairwise interaction p(ti, tj |θs) means the joint
probability that bi has the label ti and bj has the label tj ,
given a spatial model parameterized by θs. For a hypothesis
with N boxes, the spatial model can be decomposed as:

P (T |θ) = P (T |θs) =
N∏
i=1

N∏
j=1

p(ti, tj |θs) (3)

By substituting Eq. 2 and Eq. 3 into Eq. 1 and taking the
logarithm operation, the MAP problem equals the following
energy maximization problem:

arg max
T,ti∈[0,1]

N∑
i=1

fθa(Ibi , ti) +
N∑
i=1

N∑
j=1

fθs(ti, tj) (4)

where fθa(Ibi , ti) = log(p(Ibi |ti, θa)) and fθs(ti, tj) =
log(p(ti, tj |θs)).

Obviously, the traditional sliding window based detec-
tion method can be derived by setting fθs(ti, tj) = 0,
fθa(Ibi , 1) to be the appearance score and fθa(Ibi , 0) to be
a constant below pre-defined threshold. Since sliding win-
dow based algorithms often generate some overlapped de-
tections of the same pedestrian, NMS is often used as a post-
processing method which can also be shown to be a special
case by setting fθs(ti, tj) = −∞ if bi, bj have an overlap
larger than a criterion and ti = tj = 1.
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3.2. Representation

In this part we give the concrete form of fθa(Ibi , ti)
and fθs(ti, tj) defined above, and we will first introduce
the mixture model which can simplify the complexity of
fθa(Ibi , ti) and fθs(ti, tj).

3.2.1 Mixture Model

We propose to use simple linear model to describe the
pedestrians in crowded scenes considering the efficiency.
However, a single linear model may be too simple to de-
scribe the complex appearance and spatial variations of
pedestrians in real world. To better describe the complex
scenes while still use linear model, we introduce a mixture
model composed of K sub-classes where every pedestrian
is represented by its subclass. The label of bi is extended
to be li ∈ {0, 1, · · · ,K} from ti ∈ {0, 1}, where li = 0 s-
tands for background and li = k stands for the kth subclass.
Since in real applications only the binary label ti is given,
we will take the subclass label li a latent variable. Tech-
niques used to infer li in training step will be discussed in
the next part, here we assume subclass labels in the training
data are given thus we can use them to learn the subclass
model. By using the mixture model, the detection task turn-
s out to be finding the optimal hypothesis L = {l1, · · · , lN}
by maximizing the following energy function E(L):

arg max
L,li∈[0,K]

N∑
i=1

fθa(Ibi , li) +
N∑
i=1

N∑
j=1

fθs(li, lj) (5)

3.2.2 Appearance Model

Pedestrian is usually represented by some low-level features
such as HOG, SIFT, LBP which are then fed into a classifi-
er to train the model. Although effective, it may not be ro-
bust enough for pedestrian detection with heavy occlusions.
To handle the occlusions, we use a two-layer representa-
tion. The first layer is Felzenszwalb’s part based model[10]
which uses a deformable template to represent the part and
the global appearance. In [10] part scores are summarized
to give the final score. This pooling method is suitable for
normal pedestrian detection task, but may have problems
when a pedestrian is partially visible, because the scores in
overlapped parts will be low which may result in an omis-
sion. In order to improve it, we use a second layer, where
the features are the scores of each part and the appearance
parameter θa represents the weight of each part. For exam-
ple, if one subclass has only upper body, the weight corre-
sponding to upper body part can be high while other weights
are low. By using mixture model and adding part weight to
each subclass, we can model the pedestrians under different
occlusion conditions. Another advantage of the representa-
tion is that the dimension is relative low compared with the

low level feature so that it is more efficient for parameter
learning.

Given the subclass label li, we can simplify the appear-
ance model as a linear function:

fθa(Ibi , li) = θTalif(Ibi) (6)

where f(Ibi) is the part score vector of image I in the region
bi. θali is the parameter vector to model the appearance of
the lith subclass, and in our paper it stands for the weight of
different parts. For the background class θal0 is directly set
to be a zero vector.

3.2.3 Interaction Model

The interaction model is used to describe the spatial co-
occurrence of different pedestrians. For example, a bound-
ing box with only head part has high score may be detected
as a pedestrian only when there is a pedestrian around it.
Given the subclass labels li and lj , the interaction model is
also simplified to be a linear function as:

fθs(li, lj) = θTsliljf(bi, bj) (7)

where θslilj parameterizes the interaction model between
the subclass li and lj , f(bi, bj) describes the relative spatial
relationship between bi and bj . f(bi, bj) should be flexible
enough to suppress reduplicate detections and enhance true
detections with low appearance scores according to the rel-
ative spatial interaction model. We use (xi, yi),(xj , yj) to
denote the center of bi and bj , and si, sj to denote the scale
of bi and bj , then we define

f(bi, bj) = [1, dx, dy, ds, dx2, dy2, ds2]T (8)

where 1 is used as a bias term, and the left ones are the
quadratic kernel. dx, dy, ds represent xi − xj , yi − yj
and si − sj respectively. In our implementation, f(bi, bj)
is meaningful only when there is overlap between bi and
bj , otherwise f(bi, bj) is set to be a 0 vector. Similar to the
appearance model, the interactions involves background are
also set to be 0.

4. Optimization

The optimization includes two aspects: for model learn-
ing, we need to estimate the optimal parameters of appear-
ance model θa and spatial interaction model θs from weakly
labeled data; for inference, we need to maximize the en-
ergy function to find the best hypothesis. Firstly we give
the greedy algorithm for efficient inference, and then we
present our Latent Rank-SVM algorithm for discriminant
parameter learning.
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4.1. Inference

Given an image I , the number of the possible hypothesis
is of exponential order. For example, there are about 105

bounding boxes in a single image and then the number of
possible hypotheses is 210

5

. Since it’s impossible to test all
hypotheses, we aim to get an approximate solution.

For efficient inference, we define k − j expansion oper-
ation, which is used to select a box bj(lj 6= k) and set its
label to be k while keeps labels of other boxes unchanged.
We set the initial label of all bounding box to be 0, thus
the initial score of hypothesis E(L) is 0. At every loop,
we find a best k − j expansion operation that generates a
new hypothesis with the highest score. When the score of
hypothesis can’t be increased any more, the algorithm is
terminated. Since E(L) has an upper bound and keeps in-
creasing in every loop, the algorithm can be terminated in
finite steps.

To speed up inference, we set the appearance score and
interaction score with background class to be 0. Since a
large proportion of bi are background, a lot of calculation
can be avoided. Another technique is that we can reject a
lot of bounding boxes with low appearance scores, where
the threshold is selected according to the probably approx-
imately admissible (PAA) threshold selection method used
in [9].

To give the confidence of each detected bounding box ,
we define the score of bi as

s(bi) = E(L)− E(L̃) (9)

where the L̃ is the hypothesis the same as L except that
l̃i = 0. The score measures the contribution of bi to the
global energy maximization problem.

4.2. Learning

The variables to be determined consist of three parts:
appearance model parameters θa = {θai|i = 1, · · · ,K},
spatial interaction model parameters θs = {θsij |i, j =
1, · · · ,K} and latent subclass labels Lm = {li|i =
1, · · · , Nm} of labeled pedestrians in training image set
{I1, · · · , IM}. Different from common learning problem-
s, we have two difficulties: (1) the number of constraint is
too large; (2)we don’t know the subclass label L, instead we
only know binary label T . First we assume that the subclass
labels of training data are known, and adopt a hard samples
mining approach to deal with numerous constraints, then we
solve the total problem using a EM-like approach.

To formulate the Eq. 5 into a linear form, we add addi-
tional dimension to the feature representation. The original
appearance feature f(Ibi) is extended to be:

f ′(Ibi) = [0, · · · , 0︸ ︷︷ ︸∑li−1
t=1 F

, f1(Ibi), · · · , fF (Ibi), 0, · · · , 0︸ ︷︷ ︸∑K
t=li+1 F

]T

(10)

where fj(Ibi) is the score of the jth part on Ibi , and F is the
length of appearance feature, which is the number of parts
in this paper. Similarly the spatial interaction feature fbi,bj
is extended to be:

f ′(bi, bj) = [0, · · · , 0︸ ︷︷ ︸∑t1
t=1D

, f1(bi, bj), · · · , fD(bi, bj), 0, · · · , 0︸ ︷︷ ︸∑K2

t=t2D

]T ;

(11)
we use D to denote the length of original spa-
tial interaction feature and t1 =

∑(li−1)K+lj−1
t=1 D,

t2 =
∑K2

(li−1)K+lj+1D. We concatenate the appearance
parameter into a vector as wa = [θTa1 , θ

T
a2 , · · · , θ

T
aK ]T

and spatial parameter into a vector as ws =
[θTs11 , · · · , θ

T
sij , · · · , θ

T
sKK

]T . Then the energy function in
Eq. 5 equals:

arg max
L

N∑
i=1

wTa f
′(Ibi) +

N∑
i=1

N∑
j=1

wTs f
′(bi, bj) (12)

= [wTa , w
T
s ]

[ ∑N
i=1 f

′(Ibi)∑N
i=1

∑N
j=1 f

′(bi, bj)

]
(13)

Here we use w to denote [wTa , w
T
s ]T ,

and Φ(I, L) to denote the feature map
[
∑N
i=1 f

′(Ibi)
T ,

∑N
i=1

∑N
j=1 f

′(bi, bj)
T ]T . Here we

assume that we have known subclass label L, and the algo-
rithm to simultaneously infer Lwill be discussed later. Giv-
en training image I with the ground-truth hypothesis L, we
aim to find w that ensures that E(L) = wTΦ(I, L) is larger
than energy of any other hypothesis E(Hi) = wTΦ(I,Hi).
Suppose we have M training images, the objective function
can be defined as:

arg min
w,ξmi≥0

wTw + C

M∑
m=1

Nm∑
i=1

ξmi (14)

s.t.∀m ∈ [1,M ],∀i ∈ [1, Nm], (15)
wTΦ(Im, Lm)− wTΦ(Im, Hmi) ≥ l(Lm, Hmi)− ξmi

where wTw is the regularization, and ξmi is used to pun-
ish the incorrect hypotheses. l(Lm, Hmi) is the loss func-
tion to measure the difference between Lm and Hmi. The
loss function is defined according to criterion of PASCAL
VOC[8] where l(Lm, Hmi) = 1 if there has false positives
and true negatives, otherwise l(Lm, Hmi) = 0.

The above optimization problem is a learning to rank
problem and can be transformed into a linear SVM s-
ince that we can take ∆(Im, Lm, Hmi) = Φ(Im, Lm) −
Φ(Im, Hmi) as the positive sample and −∆(Im, Lm, Hmi)
as the negative sample when l(Lm, Hmi) = 1. The diffi-
culty is that we often have too many constraints since that
the number of Hmi is of exponential order. To reduce the
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number of constraints, here we use a data mining approach
similar to [10] to find the optimal solution.

At the training procedure, only a subset of total train-
ing samples are used and kept in the cache P . Samples
were divided into easy samples and hard samples, where
∆(Im, Lm, Hm) is an easy sample if ∆(Im, Lm, Hmi) >
l(Lm, Hmi), otherwise a hard one. We generate random
initial negative hypotheses by disturbing the ground-truth
hypotheses, and push them into the cache as well as the pos-
itive hypotheses. The model at every loop is updated based
on current cache. After the model trained, we can use it to
shrink cache by removing easy samples and grow the cache
by finding hard samples of the current model based on the
inference model discussed above. If all hard samples have
been included in P , the algorithm is terminated.

In real applications, we often only have the binary label
ti instead of subclass label li, so that we have to infer the la-
tent subclass with the model parameter simultaneously. The
original optimization problem is extended as the following
problem:

arg min
li,w,ξmi

≥0
wTw + C

M∑
m=1

Nm∑
i=1

ξmi (16)

s.t.∀m, ∀i, (17)
wTΦ(Im, Lm)− wTΦ(Im, Hmi) ≥ l(Lm, Hmi)− ξmi

Compared with Eq. 14, above problem has latent vari-
able li. To simultaneously learn the latent variable with
the model parameter, we use a EM-like approach similar to
latent-SVM used in [10]. Firstly we use k-means on anno-
tated pedestrians to generate the initial hypotheses, and then
we use it to train initial model F by Rank-SVM training al-
gorithm discussed above. After the model trained, new sub-
class labels of annotated pedestrians in the training set can
be inferred and then can be used to update the model again
until it converged. The algorithm can’t be guaranteed to get
the global optimal solution but we can get a relative good
solution in general.

5. Experiments
In this part we compare proposed method with

MDPM[10] and FPDW[6], which are two state-of-the-art
algorithms according to the experiments by [7] on general
pedestrian detection benchmarks. The number of subclass
in our model is set to be 3 for all experiments.

We select two challenging databases in crowded scenes:
PETS20091and UCSD[16]. The PETS2009 crowd database
is a well-known benchmark for pedestrian counting and
pedestrian tracking. In our experiment we select S1 L2 with
high density crowd for training, S2 L2 with medium density
crowd and S2 L3 with high density crowd for test. S1 L2

1http://www.cvg.rdg.ac.uk/PETS2009/a.html

contains 201 frame and 5061 pedestrians; S2 L2 contains
436 frames and 8927 pedestrians; and S2 L3 contains 240
frames and 4509 pedestrians. All images in PETS2009 are
with the resolution of 768 × 576, and every image is en-
larged twice in detection. We annotate all the pedestrians
even when they are partially visible or totally occluded in
this database. The UCSD crowd database [16] were origi-
nally used for pedestrian counting and in order to evaluate
detection the performance, we annotate all the pedestrians
in the database. In our experiment S1 with 2997 frames are
used for model learning and S2 with 1096 frames are used
for test.

To give a fair comparison, we ignore information in
video and detect pedestrians in every frame independent-
ly. We use the three detectors to infer multiple pedestri-
ans layout and use the PASCAL VOC criterion[8] to gener-
ate recall-precision curve and use AP(Average-Precision) to
compare different algorithms. The recall-precision curves
are shown in Fig. 1 and some detection results are shown in
Fig. 2.

From Fig. 1 we can find that proposed method achieves
the highest AP on all the three databases. However the
improvements are different according to the density level.
Compared with MDPM, our proposed method can obtain
about 5% to 10% AP improvement on all the three exper-
iments. On medium density crowd, the improvement is
about 5%, and on high density, the improvement is about
10%. Compared with FPDW, proposed method have similar
AP on S2 L3 and improve the FPDW about 10% on S2 L3
and UCSD. The reason that FPDW has good performance
on S2 L2 is that multiple feature fusion perform robust to
the illumination variation in S2 L2. This motivates us to use
multiple features to further improve the performance. Fig. 2
shows some detection results, we can find that some pedes-
trians with heavy occlusions can be successfully detected by
proposed method. We also compare the three detectors on
PETS2009 S2 L1, which is an easier database with pedes-
trians sparsely distributed in the scene. On this database, all
the three detectors get similar 93% AP.

In these experiments we can prove that proposed method
can improve the pedestrian detection performance over
state-of-the-art static image pedestrian detectors on crowd-
ed scenes. In general, the improvement is significant on
high density crowed scenes.

6. Conclusion
In this paper, we present a probabilistic model to glob-

ally model multiple pedestrians in crowded scenes in terms
of appearance and spatial interactions. The pedestrian de-
tection is formulated as a MAP problem. Mixture model
is utilized to simplify the appearance and spatial interaction
models. We propose Latent Rank SVM for discriminant pa-
rameter learning. Extensive experimental results show the
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Figure 1. From left to right Recall-Precision curves of MDPM[10], FPDW[5] and proposed method on PETS2009 S2 L2 View001, PET-
S2009 S2 L3 View001 and UCSD respectively.

Figure 2. Detection result of proposed method on PETS2009 S2 L2 View001, PETS2009 S2 L3 View001 and UCSD.

proposed method achieve state-of-the-art pedestrian perfor-
mance in challenging crowded scenes. In our future work,
we will incorporate the video information into our method
to improve the performance further.
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