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Abstract

Explosive growth of surveillance video data presents
formidable challenges to its browsing, retrieval and stor-
age. Video synopsis, an innovation proposed by Peleg and
his colleagues, is aimed for fast browsing by shortening the
video into a synopsis while keeping activities in video cap-
tured by a camera. However, the current techniques are
offline methods requiring that all the video data be ready
for the processing, and are expensive in time and space. In
this paper, we propose an online and efficient solution, and
its supporting algorithms to overcome the problems. The
method adopts an online content-aware approach in a step-
wise manner, hence applicable to endless video, with less
computational cost. Moreover, we propose a novel track-
ing method, called sticky tracking, to achieve high-quality
visualization. The system can achieve a faster-than-real-
time speed with a multi-core CPU implementation. The ad-
vantages are demonstrated by extensive experiments with
a wide variety of videos. The proposed solution and algo-
rithms could be integrated with surveillance cameras, and
impact the way that surveillance videos are recorded.

1. Introduction

In the past decade, the world has seen an explosive
growth in surveillance video data. Security applications
have great demands for efficient technologies for fast video
browsing, retrieval and storage.

The easiest approach to efficient browsing includes fast
forwarding [2] or video skimming [15]. Unfortunately,
skipped frames may lead to missing some video contents.
Content-adaptive skipping of frames [11] is thus proposed
but it achieves lower efficiency. Another approach, video
summarization [8], uses key frames as a synopsis to repre-
sent the original video. Like a slide show, this method loses
not only the dynamic aspect of video but also video con-
tents. The space-time video montage [6], as an alternative,
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Figure 1. The main idea is inspired by the Tetris game (left). A
key part of the proposed algorithm is online tube filling (right).

analyzes both the spatial and temporal information distribu-
tion of the input video. Inspired by seam carving [1], the
ribbon carving based method [9] considers a ribbon rather
than a whole frame as the smallest processing unit, and re-
moves the ribbons without activities. However, it achieves
low condensation ratio, and may fail when adjacent objects
have different speeds and directions.

A significant progress in achieving high condensation
ratio is video synopsis [12, 13, 14] by Peleg and his col-
leagues. Video synopsis enables a viewer to browse a day
long video recording in just a few minutes. The algorithm
is organized into two phases. The first phase does prepro-
cessing, where moving objects are extracted and inserted to
an object database. In the second phase, objects are picked
up by users from database (offline), and an energy function
is minimized to determine the play time of such objects in
synopsis video. As the newer work of Peleg, [19] generates
the coherent video synopsis based on clustering of similar
activities. Following the video synopsis framework, [18]
presents a set theoretical method to determine the play time
of objects in synopsis video. Recently, an algorithm called
direct shift collision detection [7] aims to make the second
phase of video synopsis real time. However, the result may
contain occlusions between nonadjacent objects.

However, the above offline methods in the video synop-
sis framework have the following drawbacks: (1) they re-
quire that all the video data be ready for the optimization;
(2) and are therefore computationally expensive by process-
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ing the data all at once; (3) they need huge memory to store
all the tubes and backgrounds; (4) the length of final synop-
sis video is determined by the user rather than the content
of input video, which is impractical in reality since the user
does not know the density of input video beforehand.

In this paper, we propose a novel solution, called online
content-aware video condensation, to overcome the above
problems to achieve efficient video condensation. The solu-
tion achieves the same goal as video synopsis; however, in a
content-aware approach, it uses recent video content to au-
tomatically determine the length of condensed video. The
core is an online tube filling algorithm (a tube is a frame-
sequence of an object), inspired by the game Tetris, as illus-
trated in Fig.1; the processing is performed stepwise, on-
line, thus needs a low memory consumption, and is applica-
ble to endless video. In order to achieve high-quality results,
a novel tracking method called sticky tracking is proposed
to overcome drawbacks of existing tracking methods when
applied to video condensation. It not only works well in the
case of poor object segmentation, but also keeps the chrono-
logical order of nearby objects. The proposed solution can
achieve faster-than-real-time speed when implemented on a
multi-core CPU. It could be integrated in the surveillance
cameras, and impact the way that surveillance videos are
recorded and stored.

2. Sticky Tracking

Tube is the smallest processing unit in video condensa-
tion. It is defined as the frame-sequence of the object in
video. Examples are shown on the right picture of Fig. 1
where there are five tubes. The role of tracking is to gen-
erate such tubes after object segmentation. Many track-
ing methods have been proposed to date in the field of
video analysis [21], however, those may not be entirely
suitable for video condensation. The following example il-
lustrates the problems: as illustrated in Fig. 2a with two
objects, where object 2 is occluded by object 1 at time t.
Fig. 2b shows an ideal result of a common blob tracking
method [20]: Two tubes are generated, but both are dis-

Figure 2. (a) Occlusion between two objects. Results of (b) com-
mon blob tracking, (c) optimal tracking and (d) sticky tracking.

abled. Because only one blob is matched to object 1 at time
t, something not belonging to object 1 will burst into view
in the condensed video part. Meanwhile, because no blob is
matched to object 2, tube 2 will disappear abruptly and then
appear again in the view. As a result, both tubes will cause
blinking effect, deteriorating user experience. Fig. 2c is the
result of an ideal method that would produce the most ac-
curate result. However, such an optimal tracker would fail
too: Part of tube 2 is lost due to the occlusion at time t, and
this also causes blinking.

Sticky tracking is proposed to reduce such blinking ef-
fect. It is based on the following idea: if occlusions happen
to two or more tubes, they will be merged into a single tube,
as if they are sticking together in Fig. 2d. Note that the
goal of sticky tracking is very different from that of tradi-
tional tracking methods. The key point of sticky tracking is
to launch merging before matching, that is, if two or more
tubes in the target list are matched to the same blob by the
similarity analysis at time t (in this paper we use the near-
est distance between the points on the tubes’ boundary as
similarity measure, and if occlusion happens, such distance
will be set to zero), they will be merged into one tube; then
repeat this process until there is no merging; the relation-
ship of matches, which can be “one target-to-many blobs”,
is determined at last.

#733

#732 #4547

#4548

(a) (b)

Figure 3. Sticky tracking results with a surveillance video from
[9]. A unique color presents a single track; if two or more parts
have the same color, they are considered as a single track.

In addition to reducing blinking, sticky tracking presents
another advantage, being able to amend poor object seg-
mentation (under- and over-segmentation). The case of
under-segmentation can be treated as object occlusion, for
which sticky tracking is proposed. Fig. 3 shows some sticky
tracking results for the other case of over-segmentation. In
(a), the head and the body of the same person were consid-
ered as two objects due to the over-segmentation at frame
732. When the segmentation becomes correct at frame 733,
the head and body are merged into a single tube by using
sticky tracking. In (b), a person with a suitcase splits into
two objects at frame 4548 due to occlusions by the fence,
and sticky tracking still successfully considers them as the
same object.

Moreover, sticky tracking has an ability to keep the
chronological order of objects when they are close to each
other (e.g., taking a conversation): If the distance between
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objects is less than a threshold (10 pixels in experiments),
sticky tracking will consider them as a whole object, there-
fore, their chronological order will be preserved.

3. The Online Content-aware Framework
3.1. Offline VC as Optimization Problem

The offline video condensation (VC) [13] condenses the
video by rearranging tubes in such a way that objects that
appear sequently in the original video can appear simultane-
ously in condensed video. Constraints applied for the said
purpose, includ keeping chronological order, avoiding colli-
sions between objects, consistency with background and so
on. Therefore, it can be viewed as a problem of constrained
optimization. The offline VC reassigns a time label to each
tube by minimizing the following energy function:

E(`) =
∑
i∈Q

Eu(`i) +
∑

i,j∈Q

Ep(`i, `j), (1)

where Q denotes the whole tube set, and `i denotes the time
label of tube i taking a value in the label set: LofflineVC =
{1, · · · ,M}. Here M denotes the frame number of the fi-
nal condensed video, which should vary across videos and
is actually set by users. Eu and Ep denote respectively
the unary and pairwise energy functions encoding the con-
straints [13]. Minimizing such energy function is time-
consuming due to the large search space, and needs to store
all the tubes in memory thus requires huge storage space.

3.2. Online VC as Stepwise Optimization

In contrast to offline VC, the online VC determines the
time label of each tube one by one, rather than all at once.
This can be treated as a stepwise optimization problem.
Specially, for the current tube i, we have

E(`i) = Eu(`i) +
∑
j∈Q′

Ep(`i | `j), (2)

where Q′ ⊂ Q denotes the subset of processed tubes which
changes dynamically and is reasonably much smaller as
compared to the whole set Q, and `i will take a value in
a much smaller label set:

LonlineVC = {1, · · · , n}, (3)

where n denotes the frame number of temporary condensed
space, with n � M . `j is the known time label of pro-
cessed tube j. The objective of the basic online method is
to deal with tubes by optimizing Equ. (2) at each step, to
give good approximations to optimal solutions to the prob-
lem in Equ. (1). Compared to Equ. (1), the search space
of optimizing Equ. (2) is much smaller. Besides, there is no
need to store all the tubes Q in memory but just those in Q′.
Therefore, it can achieve real-time tube processing with low
memory cost.

3.3. Online Processing Structure

A specific processing structure using the optimization
criterion in Equ. (2) is illustrated in Fig. 4. It includes six
main stages:
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Figure 4. OVC Processing Structure.

S1: Background modeling: Generate the background
sequence using Gaussian mixture models [16].

S2: Moving object extraction: Extract moving objects
using a graph-cut segmentation method [17].

S3: Tube extraction. Extract tubes using the proposed
sticky tracking method, which will be introduced shortly.

S4: Stepwise optimization of time labels: Find optimal
labels of tubes using online tube filling.

S5: Online principal background selection (PBS): Se-
lect a size-fixed subset of backgrounds using online selec-
tion method. See [5] for more details.

S6: Object stitching: Stitch tubes into selected back-
grounds (S5) using a modified Poisson image editing [13]
according to the corresponding time labels (S4).

3.4. Online V.S. Offline Framework

The processing structure in Fig. 4 enables online real-
time performance owing to advantages brought about by
the key stage: online tube filling. It is such the step makes
our method different from offline video synopsis [13]. One
can see Figure 13 in [13] for comparison of the process-
ing framework. In video synopsis, all video data (tubes and
backgrounds) should be ready before optimization, which
means that such offline framework needs huge memory to
store them and much more time to find solution in large
search space. In other words, users have to wait for a long
computational time to borrow condensed video after the
video is finished, and such property of offline framework
will reduce the user experience to a low degree. Besides,
in video synopsis the length of condensed video is deter-
mined by users who don’t know the density of input video
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beforehand. In contrast, the online framework does it by the
content of input video automatically.

4. Online Tube Filling

The idea of online tube filling comes from Tetris, sug-
gesting to deal with tubes one by one, rather than all at
once as in [13]. The objective of Tetris is to manipulate
the tetrominoes (the colorful polyominoes in the left picture
of Fig. 1) with the aim of creating a horizontal line of blocks
without gaps, then such a line can be cleared. If the player
is smart enough, the game can go on forever. Similarly, this
online method treats tubes as tetrominoes, and regards a 3D
condensation space as the playing field of video condensa-
tion. Now, our job is to design a smart player for the tube
filling game by optimizing Equ. (2).

4.1. Two Level Cache Condensed Space

Two level cache condensed spaces are introduced as the
playing field of tube filling game as shown in the left picture
of Fig. 5. These two spaces are with different size: the first
level, L1, cache space is w × h× n while the second level,
L2, cache sapce is w × h ×∞, where w and h denote the
width and height of frame respectively, and n denotes the
frame number in the cache space, which is the same with
the one in Equ. (3). The dynamic tube set Q′ in Equ. (2) is
made of tubes in these two level cache condensed spaces.

The L1 cache space is the real playing field of the tube
filling game. That is to say, an incoming tube is limited to
select a certain frame of the L1 cache space from n frames
as the starting position to show. Besides, the function of L2
cache space is to receive the tail of the coming tube if L1
cache space cannot hold the whole tube.

4.2. Embedding Collision Cost

Collision is one of the most important criteria in the on-
line tube filling. In [13], the collision cost is defined as the
volume of two tubes’ space-time overlap weighted by their
activity measures. However, this cost ignores tubes with
small size. To overcome this drawback, a new collision cost
will be necessary to give high penalty for this case.

Level 1

Level 2

tube j

tube i

tube k

frame t

x (1:w)

y (1:h)
t (∞)

t (1:n)

Figure 5. Two situations of tubes collision.

Assuming the current tube i and a processed tube j ∈
Q′ were placed at the location `i and `j respectively, the

collision cost Ec(`i | `j) between them is defined as:

Ec(`i | `j) =
∑

t∈ti∩tj

(
It

i,j ·At
i,j + (1− It

i,j) ·Bt
i,j

)
, (4)

where ti∩ tj is time intersection of tube i and j in the cache
condensed space, At

i,j denotes the penalty caused by the sit-
uation that tube i occludes tube j at time t, and Bt

i,j denotes
the penalty caused by the situation that tube i is occluded
by tube j at time t. See two cases in Fig. 5: tube i occludes
tube j while tube i is occluded by tube k at frame t. Ad-
ditionally, It

i,j ∈ {0, 1} is an indicator: if tube i occludes
tube j, then It

i,j = 1, otherwise, It
i,j = 0. Next, At

i,j and
Bt

i,j in Equ. (4) are formulated as follows:

At
i,j =

{
Ot

i,j if
Ot

i,j

Areat(j) < β

κ ·Areat(i) otherwise,
(5)

Bt
i,j =

{
Ot

i,j if
Ot

i,j

Areat(i) < β

κ ·Areat(i) otherwise,
(6)

where Areat(·) denotes the area function of the input tube
at time t, Ot

i,j ∈ [0,min(Areat(i),Areat(j))] denotes the
area intersection of tube i and j at time t, and β ∈ [0, 1]
denotes the maximal tolerable occlusion rate. In this pa-
per, we consider the collision cost as the unique constraint:
Eu(·) ≡ 0 and Ep = Ec.

4.3. Energy Minimization for Tube Filling

4.3.1 Greedy Minimization

As one of the simplest strategies for tube filling, greedy op-
timization selects the location with least collision cost:

L (i) = arg min
`i

∑
j∈Q′

Ep(`i | `j). (7)

This greedy optimization makes the locally optimal choice
at each stage with the hope of making the condensed space
full with least collision at last. However, the greedy strategy
makes a decision without considering future tubes, so there
is still room for further improvements.

4.3.2 Roulette Wheel Selection

Roulette wheel selection, known as a genetic operator used
in genetic algorithms for creating the basis of the next gen-
eration [10], can be utilized as an optimization method for
tube filling. First, we denote the function of the collision
rate of tube i when it is placed at location `i:

CRi(`i) =
∑
j∈Q′

Ec(`i | `j)
/ ∑

t∈ti

Areat(i), (8)

Then we assign each location j a fitness for the tube
i: Fi(j) = 1/(1 + e−ω(β/2−CRi(j))), where ω and β/2
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control the shape and the central location of the sig-
moid function respectively. The next step is to calculate
each location’s probability of being selected: Pi(`i) =
Fi(`i)/

∑n
j=1 Fi(j). Finally, we can carry out the roulette

wheel selection using the above probabilities. It is obvious
that candidate locations with a low probability will be less
likely to be selected, however, there is still a chance that
they may be; this is an advantage, because such strategy
gives the future tubes chance to obtain better locations.

4.4. Content-aware Tube Filling

One of the important issues in tube filling is how to de-
cide whether L1 cache condensed space is full of tubes. Be-
fore a decision can be made, we need to decide whether a
new tube i can be filled into the cache space:

CRi

(
Lgreedy(i)

)
> τ, (9)

where the function CRi(·) is defined in Equ. (8), Lgreedy(i)
denotes the result of greedy selection of tube i by Equ. (7),
and τ the maximum tolerable threshold. The current tube
i cannot be filled into the cache space if the inequality (9)
holds, then such tube will be added to a temporary list, and
we simply assume the L1 cache condensed space is full
once the length of this temporary list reaches a limit.

As the L1 space is full, its content is stitched to selected
backgrounds for condensed video, then it will be cleared
and the first n frames of L2 space will be pushed into the
L1 space. The benefit of this mechanism is that the length
of the condensed video is determined by the content of the
input video. This is what call content-aware condensation.

5. Experimental Results
In experiments, we use graph cut based background sub-

traction [17] as accurate segmentation of moving objects.
However, the graph cut is computationally expensive, thus
can’t achieve real-time processing. Therefore, we design a
FIFO thread pool to process the frames with graph cut. Ta-
ble 1 shows the relationship between the speed of graph cut
and the size of the thread pool (thread number). It runs at a
8 cores @ 2.66 GHz computer with frame size 320×240. It
can be seen that such multi-thread cut enables faster-than-
real-time processing.

Thread Num. 1 2 3 4 5 6 7 8
Speed (fps) 21 40 57 71 85 95 98 110

Table 1. The relationship between speed and thread number

The system of online content-aware video condensation
is evaluated with extensive experiments. Nine surveillance
videos are used. They are taken from indoor and outdoor
environments. The final condensed videos are generated

00:01:11 00:01:31

(a)

(b)

00:00:31

Figure 6. The online condensed result for IndoorGTTest2 [3]. (a)
Original Frames. (b) Condensed Frames.

by setting the size of thread pool of object segmentation
to 7 with the greedy optimization for online tube filling.
Fig. 6 shows the condensed result of surveillance video “In-
doorGTTest2” [3] by our online method. It can be seen that
the essence of the video condensation is to simultaneously
display the moving objects (two men in this case) originally
in different frames, which is a means for fast browsing of
activities in videos. Fig. 7 shows that as the maximum tol-
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Figure 7. Relationship among condensation ratio, τ in Equ. (9),
and MTLS (max temporary list size), with the “Overpass” [9].

erable threshold τ and max temporary list size (MTLS) in-
crease, the condensation ratio grows. Additionally, com-
pared to [9], our method has a far higher condensation ratio
(the condensation ratio reported from [9] is lower than 3
while the max one of our method is 239).

Video Description #Frame #Tube Speed (fps) CR
1 Outdoor, 320× 240 138583 1336 85 9.2
2 Garden, 320× 240 33826 374 94 26
3 Park, 352× 288 10221 56 71 102
4 Exit, 320× 240 81538 421 78 47
5 IndoorGTTest1 [3] 2659 9 88 26
6 IndoorGTTest2 [3] 1750 23 79 17
7 Overpass [9] 23950 59 211 119
8 Road, 320× 240 16897 343 77 16
9 Park2, 352× 288 11278 46 83 113

Table 2. The results of online content-aware video condensation
on various types of surveillance videos. CR-Condensation Ratio.

2086



The condensed results are summarized in Table 2 1. The
results show that in addition to the aforementioned advan-
tages, our method can achieve faster-than-real-time process-
ing speed. Besides, in Table 2 the lowest condensation ratio
is 9.2 while the highest one is 119, and this means that our
method has adaptive condensation ratio varying from video
to video according to the video content. This is more rea-
sonable than by setting a fixed condensation ratio in video
synopsis [13]: Just imagine how to condense a very-heavy-
density video in a ratio of 100, and what’s worse, the user
doesn’t know it beforehand. The nine surveillance videos of
Table 2 are processed automatically without manual inter-
vention, and our method can take endless surveillance video
and generate endless condensed video.

Method Speed Memory CR CA Blinking Effect
VS [13] 10 fps High User No High
RC [9] Slow Huge Low Yes –
Ours 70 fps+ Low High Yes Low

Table 3. Comparison between our method and the state-of-the-art
video condensation methods. Abbreviation: VS-Video Synopsis,
RC-Ribbon Carving, CR-Condensation Ratio, CA-Content Aware.

Table 3 gives a summary of comparison between our
online method and the state-of-the-art video condensation
methods in terms of speed, memory used, condensation ra-
tio, content aware and blinking effect. It shows that com-
pared to other methods, our method has a faster speed with
lower memory, and a content-aware condensation ratio with
better visual quality. Someone may ask what happens if the
non-online approach [13] is simply performed on a block-
by-block basis. Actually, such way is unrealistic because
non-online approaches need to set a fixed condensation ra-
tio for each block, however, the density of each block is
unknown beforehand.

6. Conclusions
Online content-aware video condensation has been pro-

posed as an efficient mean for fast indexing and browsing
of activities in video. Extensive experiments have clearly
demonstrated the advantages. The online method can pro-
cess live video in real time, thus it could be integrated inside
the surveillance cameras. As a result, the security operator
can take a fast browsing of condensed video at any time
without waiting.

However, the video condensation technology by its func-
tionality has some limitations: 1) It’s difficult to achieve
good condensation ratio for videos with dense activity, and
it outputs nearly as long as the original video. This limita-
tion could not be tackled apparently in the current frame-
works. 2) It is difficult to condense a video containing ob-
jects that last for a long time. Keeping such endless tubes

1The video results are at http://www.cbsr.ia.ac.cn/users/skfeng/ovc/

not only leads to a low condensation ratio but also consumes
huge memory. Dividing tube with least blinking effect may
be a solution.

The online method currently uses local minimizers. As it
is inspired by the game Tetris, existing AI algorithms for the
Tetris game [4] could be incorporated to better approximate
the global solution, which is another future direction.
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