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Abstract

Recently, methods with learning procedure have been
widely used to solve person re-identification (re-id) prob-
lem. However, most existing databases for re-id are small-
scale, therefore, over-fitting is likely to occur. To further
improve the performance, we propose a novel method by
fusing multiple local features and exploring their struc-
tural information on different levels. The proposed method
is called Structural Constraints Enhanced Feature Accu-
mulation (SCEFA). Three local features (i.e., Hierarchical
Weighted Histograms (HWH), Gabor Ternary Pattern HSV
(GTP-HSV), Maximally Stable Color Regions (MSCR)) are
used. Structural information of these features are deeply ex-
plored in three levels: pixel, blob, and part. The matching
algorithms corresponding to the features are also discussed.
Extensive experiments conducted on three datasets: VIPeR,
ETHZ and our own challenging dataset MCSSH, show that
our approach outperforms stat-of-the-art methods signifi-
cantly.

1. Introduction
Person re-identification (re-id) is a challenging problem

in video surveillance scenarios which has attracted more

and more attention in recent years. It aims to associate iden-

tities of individuals across disjoint views in non-overlapping

camera networks. The key issue is to measure the similar-

ity between pedestrian images to estimate if they are from

the same person. Due to the low resolution of images and

the uncertainties of the views of different cameras, the ap-

pearance of images from the same person may change a lot.

Moreover, there are illumination and background variations

due to different environments and even occlusion when the

person is in a crowd.

Most existing person re-id methods can be roughly clas-

sified into two groups: 1) methods only based on image
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(regardless of the topology of camera networks) [3, 5, 7, 8,

19, 18, 14, 17]; 2) methods utilizing spatial and temporal

constraints within camera networks [1, 12, 13].

The image-based methods can be mainly divided into t-

wo types: 1) Extract visual features which are both distinc-

tive and stable under various conditions between cameras.

After feature extraction, an established distance measure-

ment is applied to compare different person representations

[3, 5, 8, 17]. The main difficulties of these methods are

finding the applicable features under realistic conditions.

2) The other type aims to learn optimal distance measure

for all features jointly via distance learning theory [14, 19].

These methods are less sensitive to feature selection, there-

fore they usually use very simple features, such as RGB, Y-

CbCr, HSV color features and two types of texture features

extracted by Schmid and Gabor filters which have been used

in [7]. However, their results may be biased by the selection

of the parameters, thus making these methods less flexible

to different scenarios.

Methods combined with spatial and temporal informa-

tion within camera networks can get much higher perfor-

mance than those solely based on appearance [12]. Infor-

mation like the traveling time across cameras, the expect-

ed entry/exit regions in the scene [13], people’s locations

and speed can be used as discriminative features. However,

these methods are limited to the necessity of the knowledge

of the environment such as where the cameras are deployed.

Traditional appearance-based methods usually make use

of histogram features without paying enough attention to

the structural information of the image. This paper high-

lights the structural constraints on local features, which fa-

cilitates the matching between two persons. The structural

constraints are divided into three levels in bottom-up order:

pixel-level constraints, blob-level constraints and part-level

constraints. For the pixel-level, considering spatial loca-

tions of pixels, we extract color histograms by assigning

weights according to the distance from each pixel to the cen-

tral point of prior partitions. For the blob-level, two features

are used. The first one is MSCR [4], by which not only the
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Figure 1. Hierarchical structure with 3 layers consisting of six

components defined on the average image of the human body. The

left is the two-dimensional Gaussian kernels applied on different

layers. The right is the average image derived by accumulating all

the human body images.

average colors are used, but also the locations and descrip-

tion capabilities of blobs are taken into account. The other

is GTP-HSV which can describe massive keypoints detect-

ed on human body. Structural constraints are enhanced by

graph matching approach. Finally, for the part-level, a hi-

erarchical structure is formed with three layers to describe

the targets, upon which the structural constraints of human

body are utilized.

We call the proposed method Structural Constraints En-
hanced Feature Accumulation (SCEFA), our model is unsu-

pervised and does not require training samples. In contrast

to most existing learning methods in this field, our method

can avoid over-fitting caused by the learning procedure.

2. Features
In this section, we introduce three features to explore the

structural information on three levels. In Sec. 2.1, HWH is

discussed to enhance the structural constraints on both part-

level and pixel-level; in Sec. 2.2 and Sec. 2.3 MSCR and

GTP-HSV is discussed to enhance the structural constraints

on blob-level, respectively.

2.1. Hierarchical Weighted Histograms

We present a hierarchical structure of human body which

takes into account the inner connections of body parts. It

consists of six components, upon which weighted color his-

tograms are extracted (see Fig. 1). This feature is called Hi-
erarchical Weighted Histograms (HWH). It should be noted

that pixel-level and part-level structural constraints are en-

hanced in weighted color histograms and hierarchical struc-

ture, respectively.

We label the center and boundary of each basic compo-

nent on the average pedestrian image computed from the

overall sample images. A coarse-to-fine approach is applied

to construct the hierarchical structure. The first layer corre-

sponds to the bottom layer while the second and the third

layer consist of two and three components, respectively, see

Fig. 1. Partition of the first layer is the whole sketch of body.

Finer partitions on the second layer are partial combinations

of the three basic components.

HWH is built by applying a Gaussian kernel within each

partition{P1..., P6}:
H(i) =

∑

x,y

w(x, y)s(I(x, y) ∈ B(i)) (1)

where H represents the histogram, s(.) is a bool function,

B(i) is the value range of the ith bin, w(x, y) is calculated

as follows:

w(x, y) =
1

Z
exp[−( (x− x0)

2

2σ2
x

+
(y − y0)

2

2σ2
y

)] (2)

where (x0, y0) is the center of the partition, σx and σy is

the deviation parameter (we set σx and σy three times of

the width and height of the partition, respectively), and Z is

the normalization coefficient.

2.2. Maximally Stable Color Regions

The Maximally Stable Color Regions (MSCR) operator

[4] detects stable color blob regions by an agglomerative

clustering step on each pixel from image, which shows in-

variance to scales and high repeatability. In this paper, after

applying MSCR detector with all default parameters, we u-

tilize the outputs of MSCR that consist of a second moment

matrix and average color to match. It is noted that blob-level

structural constraints are taken into account in the matching

algorithm of MSCR (see Sec. 3.2 for details).

2.3. Gabor Ternary Pattern in Re-id

In this paper, we briefly consider person re-id as a prob-

lem seeking discriminative affine-invariant features in order

to overcome the difficulty arising from viewpoint changes.

The SIFT detector presented by Lowe [11] is one of the best

detectors for keypoints as well as the most commonly used

in person re-id [16]. However, the SIFT detector outputs

insufficient number of keypoints due to the low resolution

of image while describing a person. Thus, inspired by [10],

we use a more proper keypoint detector CanAff and adop-

t Gabor Ternary Pattern (GTP) by combining it with HSV

color information as a novel feature descriptor which we

call GTP-HSV (see Fig. 2).

By using the GTP descriptor from the keypoint detected

by CanAff, a 1296-dimensional feature vector is extracted.

In this paper, we follow all the parameters in accordance

with [10].

As we know, color-based descriptors are very discrim-

inative and robust to the viewpoint changes. Thus, with
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Figure 2. Flowchart of the GTP-HSV extraction. In this case only

nine keypoints are processed.

the purpose of obtaining a more representative local fea-

ture descriptor, we not only extract texture information, but

also color information (16 × 8 × 4 HSV used in this pa-

per) from normalized image patches. After concatenating

with the feature vector of Gabor filters, the dimensionality

of combined feature vector will be very high. In order to

reduce the computation complexity, we apply PCA to get-

ting a M-dimensional feature vector, where M = 128 in

this paper.

3. Multiple Feature Matching
3.1. HWH Matching

Each partition of HWH has already considered pixel-

level structural constraints (by applying Gaussian weight)

while the hierarchical structure of HWH reflects the part-

level structural information. It is inappropriate to compute

the similarity of each partition independently, because un-

derlying structural relation may exist between partitions.

Thus, HWH is extracted and concatenated to a final repre-

sentative histogram taken as a whole, therefore the match-

ing between HWHs becomes structure constrained match-

ing both on pixel-level and part-level. Furthermore, match-

ing between HWHs is calculated by the Hellinger distance

[15] instead of the Battacharrya distance, from which we

found 1% improvement of the recognition rate.

3.2. Blob Matching for MSCR

Due to the uncertainty of the size of detected MSCR

area, it is inadequate by computing the distance of aver-

age color and circle centers as in [3]. Therefore it is better

to compare the blobs which have similar size of area. The

distance between two blobs dblob can be measured as:

dblob = αdcolor + βdy + μdarea (3)

where dcolor is the difference of average color value (Lab

color space), dy is the difference of vertical coordinate and

darea is the difference of the size of area. α, β and μ are

combination coefficients for these three distances, respec-

tively. In this paper, we take α = 0.4, β = 0.6 and μ = 0.4.

In addition, to have a better corresponding map be-

tween blobs, we present a bidirectional matching strate-

gy: given two sets of blobs Bp = {bp1, bp2, ..., bpNp
} and

Bg = {bg1, bg2, ..., bgNg
} from probe and gallery respective-

ly, where Np and Ng are total number of the blobs in probe

and gallery. First, for each blob t in Bp, using Equ. 3 to find

a matched pair (t, q) which has the minimal distance from

blob t to set Bg . By repeating this step for all the blobs in

Bp, a set of matched pairs (also called assignment in Sec.

3.3) Ap→g can be set up. Second, for each blob t in Bg , we

calculate a matching pair (t, q) which has the minimal dis-

tance from blob t to set Bp and then go through all the blobs

in Bg , and a set of assignments Ag→p can be obtained. We

consider the intersection of Ap→g and Ag→p, denoted as

Ap↔g = Ap→g ∩AA←g = {(a1, b1), (a2, b2), ..., (an, bn)},
where n is the total number of best matched pairs. The dis-

tance between the MSCR features can be finally obtained

by:

dMSCR(Bp, Bg) =
1

n

n∑

i=1

dblob(ai, bi) (4)

3.3. Graph Matching for GTP-HSV

The GTP-HSV feature exhibits the following desirable

properties for feature matching: (1) Invariant to the scale

changes and affine transformations. (2) High repeatabil-

ity of keypoints in two views of a same person. In this

paper, we apply graph matching which takes into account

the structural constraints among keypoints and uses spec-

tral technique to seek the best matches. To the best of our

knowledge, this is the first time applying graph matching

method in re-id.

Given a set of Np candidate keypoints {Ki} from a probe

image and a set of Ng target keypoints {K ′
i} from a gallery

image, the corresponding map of assignments becomes a

binary value set. Considering the speed of calculation, on-

ly keypoints which have similar feature representation are

calculated:

x = (x1
1, x

2
1, ..., x

l1
1 , ..., x

1
np
, x2

np
, ...,

x
lnp
np , ..., x1

Np
, x2

Np
, ..., x

lNp

Np
)

(5)

where xl
np
∈ {0, 1}, l = 1, 2, ..., lnp

, np = 1, 2, ..., Np,

and l is the number of candidate assignments for a key-

point which is determined by a feature similarity threshold

TGTP−HSV . For each candidate assignment a = (i, i
′
)

(use i represent keypoint Ki for short in this section), there

is an associating affinity that measures how well keypoints i
matches i

′
. In addition, for each pair of assignments (a, b),

where a = (i, i
′
) and b = (j, j

′
), there is an affinity that
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measures how compatible the features (fi, fj) are with the

features (fi′ , fj′ ). Therefore, the candidate assignments

a = (i, i
′
) can be seen as nodes forming an undirected

graph which is weighted by the individual scores wa at n-

ode a and wa,b on the edge connecting to the node a and b.
By this way, the matching problem can be formulated as the

following optimization form:

S(x) =
∑

a∈A
waxa + λ

∑

a,b∈N
wa,bxaxb (6)

where A is the set of assignments and N is the compatible

pairs of assignments, xa represent xl
np

in Equ. 5, and λ
is the weight factor, which is set to 0.1 in our experimen-

t. (a, b) is defined as a compatible assignment pair when

keypoints (i, j) and (i
′
, j

′
) are geometrical neighbor at the

same time. Only one-to-one matching is allowed in our

model, therefore, Equ. 6 has to obey the following con-

straints: ∑

i=np,i
′
xa ≤ 1,

∑

i,i′=ng

xa ≤ 1 (7)

With proper matrix manipulation, Equ. 6 can be refor-

mulated as

S(x) = XTMX (8)

where M is called the affinity matrix, in which M(a, a) =
exp{−d(fi, fi′ )}, M(a, b) = exp{− 1

σ‖di,j − di′ ,j′ ‖2}. If

the two assignments are not compatible, we set M(a, b) =
0; otherwise, M(a, b) = exp{− 1

σ‖di,j − di′ ,j′ ‖2}, where

di,j is distance from keypoint i to j and σ is the average

radius of the area describing keypoints. Therefore, we can

get:

x∗ = argmax(XTMX) (9)

By applying the spectral approach, the above optimal

problem becomes finding the main cluster from the assign-

ments graph and can thus be solved by eigenvector tech-

nique [9]. After the eigenvalue decomposition of affinity

matrix M , the values of main eigenvector are interpreted as

the confidence of corresponding assignments. In addition,

we reject those assignments conflicted with constraints de-

scribed in Equ. 7, as well as the ones with low confidence.

Finally, the optimal assignments of the keypoints between

probe and gallery can be obtained by quantizing the solution

into a binary value vector. In proposed method, however, it

is preferable to utilize the original solution (not quantized

into a binary value vector) dGTP−HSV = x∗TMx∗ as the

similarity score.

3.4. Score Fusion

Finally, a weighted score fusion is conducted via:

d(Ip, Ig) = φ1dHWH(Hp, Hg) + φ2dMSCR(Bp, Bg)

+ φ3dGTP−HSV (Gp, Gg)

(10)

where weighted coefficients φ1, φ2 and φ3 are set as 0.4,

0.2, and 0.4, respectively.

4. Experiment
We validate the proposed approach on two publicly

available datasets: VIPeR [6] and ETHZ [2]. To have a fur-

ther understanding of the performance of proposed method,

we conduct the experiment on our own dataset MCSSH (see

Fig. 5), which is a challenging multi-shots dataset.

It is noted that in order to verify the flexibility and robust-

ness of our method, we do not take any specific steps for the

multi-shots datasets. Even without any learning process for

spatio-temporal information of the multi-shots datasets, the

proposed approach can still achieve state-of-the-art results.

Evaluation Settings. In our experiments, as for single-shot

dataset, we randomly split each pair of persons and then put

them into Cam A and Cam B respectively. After that, we

randomly take all images of p people (classes) from Cam A

to set up probe set and left the remainders unused. Gallery

set is also set at the same time by finding the corresponding

persons in Cam B. Then we repeat this procedure for 10

times and use the average cumulative match characteristic

(CMC) curves [6] to show the recognition performance.

As for multi-shots dataset, we put all images together

and randomly select one image from all persons (classes) to

set up the gallery set and the rest are used as probe set. This

procedure is repeated for 100 times to get the average CMC

curves.

VIPeR. The Viewpoint Invariant Pedestrian Recognition

database is the most popular and largest public dataset of re-

id. As a single-shot dataset, it contains 632 pairs of pedes-

trians and images in VIPeR suffer greatly from illumina-

tion and viewpoint changes, making it a very challenging

dataset.

Fig. 3 represents our results as well as those obtained

by other state-of-the-art methods, namely PRDC [19] and

SDALF [3], with the probe set p = 316, p = 432, p = 532.

Results for Adaboost [7], again lower than others, are de-

picted for comparison purpose only. Besides, CMC scores

obtained by these four approaches are reported in Tab. 1. It

can be seen from both Fig. 3 and Tab. 1 that SCEFA always

outperforms the other approaches especially on top ranks.

Generally, SCEFA stands best on rank-1 which achieves

great improvement (around 12% with three different num-

ber of probe set) for correct pair matching. With the increas-

ing number of probe set (which means decrease number of

the train set), the performance of SCEFA, as expected, is not

impaired as much as the performances obtained by learning

methods like PRDC and Adaboost. Both of the appearance-

based approaches SCEFA and SDALF, outperform PRDC

when p = 532, while SDALF is lower than PRDC with

p = 316.

ETHZ. The ETHZ dataset consists of 146 persons with
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Figure 3. VIPeR dataset: CMC curves for SCEFA and other state of the art approaches.

Table 1. VIPeR dataset: top ranked matching rate (%) with p = 316, p = 432 and p = 532 in the probe set, r is the rank.

Methods
p=316 p=432 p=532

r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

SCEAF 26.49 49.80 60.29 73.54 23.71 45.39 55.39 67.89 22.13 42.72 52.03 63.19
PRDC [19] 15.66 38.42 53.86 70.09 12.29 31.55 44.49 59.91 9.12 24.19 34.40 48.55

SDALF [3] 19.11 38.97 51.07 65.29 16.58 34.80 45.09 58.75 15.19 31.72 41.45 54.15

Adaboost [7] 8.17 24.15 36.58 52.12 6.83 19.81 29.75 43.06 4.19 12.95 20.21 30.73

8555 images in total, where images of people are taken from

a moving camera in a busy street. Viewpoint and illumina-

tion changes as well as occlusions are the main challenges

in ETHZ. The ETHZ dataset is structured with 3 sequences,

in this paper we call these sequences ETHZ1, ETHZ2 and

ETHZ3 respectively.

The comparative results of our experiments carried out

on ETHZ are shown in Fig. 4. We compare SCEFA with

state of the art appearance-based method SDALF. It can be

seen that SCEFA outperforms SDALF on the first two se-

quences of ETHZ: ETHZ1 and ETHZ2, while the CMC

curves almost overlap on ETHZ3. It is, however, obvious

that SCEFA outperforms SDALF at rank-1 on ETHZ3 with

around 5% improvement. The reason of the decreasing per-

formance of SCEFA on ETHZ3 is that the images in ETHZ3

are different from the other two: the pedestrian contours do

not fill the bounding box, therefore, when we segment the

pedestrian at a fixed ratio, the three basic components we

get are not corresponded to the body parts accurately which

will affect the features we extract.

Multiple Camera Scenario in Station Hall (MCSSH).
This dataset is captured in a busy station hall. It contains

345 pedestrians with totally 1561 images. This dataset cap-

tures images in real monitoring scenario, we can see some

sample images in Fig. 5.

To give more insight on how our proposed method per-

forms on multi-shots dataset, we carry out the experiments

on MCSSH. Our experiments on the MCSSH dataset follow

the protocol pre-mentioned in multi-shots settings. Fig. 6

Figure 5. Examples of the MCSSH dataset.

shows our results as well as the one obtained by SDALF.

We can see that our proposed method outperforms SDALF

completely by 17% at rank-1 in addition to the average 13%
improvement over all rank scores. Note that with struc-

tural constraints enhanced, local features can provide no-

table benefit in re-id application. Even by using the same

features, significant improvement can be achieved by ex-

ploring structural information.

5. Conclusions
In this paper, we combine three suitable features for

high performance person re-identification and introduce the

structural constraints enhancement on three levels into the

feature extraction and matching process to improve the per-

formance further. As demonstrated by the experimental re-

sults, our approach outperforms state-of-the-art methods in-
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Figure 4. ETHZ dataset: CMC curves for SCEFA and SDALF. Left to right: results on SEQ.#1, on SEQ.#2, and on SEQ.#3.

Figure 6. MCSSH dataset: CMC curves for SCEAF and SDALF.

cluding learning based and feature selection based method

significantly. As an unsupervised method, our approach is

robust on most re-identification datasets.
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