
The Fastest Deformable Part Model for Object Detection

Junjie Yan Zhen Lei Longyin Wen Stan Z. Li ∗

Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences, China

{jjyan,zlei,lywen,szli}@nlpr.ia.ac.cn

Abstract

This paper solves the speed bottleneck of deformable
part model (DPM), while maintaining the accuracy in de-
tection on challenging datasets. Three prohibitive steps in
cascade version of DPM are accelerated, including 2D cor-
relation between root filter and feature map, cascade part
pruning and HOG feature extraction. For 2D correlation,
the root filter is constrained to be low rank, so that 2D cor-
relation can be calculated by more efficient linear combi-
nation of 1D correlations. A proximal gradient algorithm is
adopted to progressively learn the low rank filter in a dis-
criminative manner. For cascade part pruning, neighbor-
hood aware cascade is proposed to capture the dependence
in neighborhood regions for aggressive pruning. Instead
of explicit computation of part scores, hypotheses can be
pruned by scores of neighborhoods under the first order ap-
proximation. For HOG feature extraction, look-up tables
are constructed to replace expensive calculations of orien-
tation partition and magnitude with simpler matrix index
operations. Extensive experiments show that (a) the pro-
posed method is 4 times faster than the current fastest DPM
method with similar accuracy on Pascal VOC, (b) the pro-
posed method achieves state-of-the-art accuracy on pedes-
trian and face detection task with frame-rate speed.

1. Introduction

The deformable part model (DPM) [11] is one of the

most popular object detection methods. It is originally pro-

posed for Pascal VOC [9] challenge and is the foundation

of champion systems in Pascal VOC 2007-2011. Recen-

t works have extended DPM to related tasks and achieved

leading performance, such as articulated human pose esti-

mation [35], face detection [36, 34] and pedestrian detec-

tion [33, 32]. DPM has advantage in handling large appear-

ance variations for challenging datasets, however, it takes

more than 10 seconds (without parallelization) per image

∗corresponding author

in Pascal VOC. The speed is a bottleneck of DPM in real

application, where speed is often as important as accuracy.

Recent works have accelerated deformable part model

(DPM) by one order of magnitude, such as cascade [10],

coarse-to-fine [22], branch-and-bound [16] and FFT [8]. In

DPM, the detection score of each hypothesis is determined

by the score of appearance minus the deformation cost. The

appearance score is calculated by the correlation between

HOG feature and a sequence of filters including root and

parts, which takes most of the time due to the high dimen-

sion. [10] and [22] reduced the computation by pruning un-

promising hypothesis early. [8] used FFT to accelerate cor-

relation. These methods, however, still take about 1 second

per image for Pascal VOC detection. We take cascade DPM

[10] as the baseline, and find that each step in 2D correlation

by root filter, cascade part pruning and HOG feature extrac-

tion makes DPM prohibitive even if the other two steps are

free. To finally remedy the speed bottleneck of DPM, we

thus need accelerate all these three steps.

Discriminative Low Rank Root Filter In DPM (and

accelerated versions [10, 22, 16]), root scores are dense-

ly computed by 2D correlation between the root filter and

HOG feature map. This paper reduces the cost by constrain-

ing the rank of root filter. As used in other computer vision

tasks [13, 21, 31, 25], the 2D correlation can be divided into

linear combination of more efficient 1D correlations, where

the combination number is the rank of the filter. To learn

the low rank filter while preserving the discriminative abil-

ity, an additional nuclear norm is added to traditional SVM

objective function. This paper adopts a proximal gradient

algorithm to progressively learn it by minimizing an upper

bound function with closed form solution. The discrimina-

tively learned low rank root filter can reduce the correlation

cost and help to prune a large number of negative hypothe-

ses.

Neighborhood Aware Cascade DPM can be more effi-

cient through cascade based pruning of low score hypothe-

ses after evaluating a subset of parts, as explored in [10].

However, there are still two kinds of redundancy in this

cascade. The first is that one object can activate multiple

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.320

2491

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.320

2497

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.320

2497

overlapping hypotheses to pass through the whole cascade,

while only one hypothesis with the highest score is useful

for detection. The second is that if one hypothesis has very

low score, its neighborhoods tend to have low scores and

probably can avoid evaluation. Motivated by the crosstalk

[5] in boosting classifier, this paper proposes neighborhood

aware cascade for DPM to reduce the two kinds of redun-

dancy. Many hypotheses in this cascade can be aggressively

pruned according to the first order approximation of stage

scores by their neighborhoods, instead of explicit computa-

tion.

Look-up Table HOG HOG is used in DPM as a low-

level representation due to the advantage in tolerating local

transformation. However, the original HOG calculation has

high computational cost, mainly due to the operations in

calculating the orientation partition and magnitude. This

paper shows that look-up table (LUT) can be used to replace

them with much simpler matrix index operations, based on

the fact that there are only finite possibilities of gradient and

orientation.

The rest of the paper is organized as follows. Section 2

reviews the related work. An overall introduction of DPM

is presented in section 3. The discriminative low rank root

filter, neighborhood aware cascade and LUT HOG are de-

scribed in section 4, 5, 6 respectively. We show experiments

in section 7 and conclude the paper in section 8.

2. Related Work
Acceleration of DPM This work is most related to ap-

proaches that accelerate single category DPM in detection.

[10] proposed to convert star-structure to cascade, which

can efficiently prune unpromising hypotheses. [22] pro-

posed a coarse-to-fine approach based on that model at low

resolution can prune a lot of hypotheses with low compu-

tational cost. FFT was used to accelerate the correlation in

[8]. Motivated by the branch-and-bound approach [20] for

object detection, [16] introduced it to DPM with carefully

designed bound. For a category with 6 components, these

methods run at about 1 FPS per Pascal VOC image on a sin-

gle thread, which is faster than DPM by one order, but still

relatively slow for real application.

Acceleration of Multi-category DPM Quite a large

number of recent works [23, 27, 15, 3, 17] were proposed to

accelerate DPM for multi-category detection, e.g. simulta-

neous detection of 20 categories on Pascal VOC. Steerable

part model [23] used a part bank with linear combination

to approximate correlation score of different categories. S-

parselet [27, 15] used a large part bank with sparse linear

combination. [15] and [23] both achieve three times accel-

eration over the original DPM for 20 category object detec-

tion, however, they are slower than the cascade DPM [10]

which detects each category independently. Very recently,

[3] proposed to use locality-sensitive hashing to approxi-

mate the correlation in DPM with a decline of performance

to detect 100,000 categories on a single workstation.

Acceleration of Pedestrian Detection Recently, large

improvements on efficiency were achieved in pedestrian de-

tection task [6, 5]. [6] proposed to approximate features at

nearby scales for fast computation of multiple channel fea-

tures. Based on the feature and boosting classifier in [6],

[5] further proposed crosstalk cascade by considering the

dependence in neighborhood. [5] is considered to be one of

the best detectors in Viola-Jones framework [30] in terms of

speed and accuracy. We extend this idea to neighborhood

aware cascade in DPM.

HOG computation The widely used HOG implemen-

tation in [12] takes about 0.5 second per VGA image on a

single thread, which itself slows down DPM. Unfortunate-

ly, this step is often directly ignored by recent works on

acceleration of deformable part model. Some recent works

[27, 28, 24] accelerated HOG with the computation capacity

of GPU, however, the algorithm itself is not improved. With

the help of LUT, HOG implementation in this paper runs on

a single CPU thread is as fast as the GPU implementation

reported in [24]. LUT based method can be applied on GPU

for more acceleration.

3. DPM and Cascade DPM
This part gives a brief review of DPM and cascade DPM,

and then analyzes the bottleneck in computation.

The DPM is composed of a root filter w0 and n part-

s, where the t-th part is parameterized by filter wt and de-

formation term dt. An object hypothesis γ is specified by

{p0, p1, · · · , pn}, where p0 is the location of root, and pt is

the location of the t-th part. Root and parts are connected

by a pictorial structure. The detection score s(γ) is defined

as:

s(γ) = wT
0 φa(p0, I) +

n∑
t=1

wT
t φa(pt, I)− dTt φd(pt, p0),

(1)

where φa is the HOG feature for appearance, and φd is sep-

arable quadratic function for deformation. Mixture compo-

nents can be naturally added to represent objects in different

poses, but we leave them out to simplify the notation.

For a hypothesis γ in detection, only root location p0 is

known, while the part location pt is inferred by maximiz-

ing the part appearance score minus the deformation cost

associated with displacement:

pt = argmax
p

wT
t φa(p, I)− dTt φd(p, p0), (2)

where p traverses possible locations of the part. Since parts

are directly attached to the root, their locations are inferred

independently for a fixed root. It has been found in previous

works [10, 22, 8] that in DPM most of the time is spent on

calculating the appearance term due to the high dimension.

249224982498

0.07

0.46

0.08

0.15

0.14

0.84

0 0.5 1 1.5

Proposed
Method

Cascade DPM

SECOND

Time Cost of Cascade DPM and Proposed Method

HOG Root Part

Figure 1. Average time cost (second) of the cascade DPM [10] and

the proposed method on Pascal VOC with a single CPU thread.

The time for HOG extraction, root and part are listed, while other

steps are nearly free. For each category, the DPM has 6 mixture

components and each component has 8 parts.

In cascade DPM [10], acceleration is achieved by reduc-

ing the number of parts evaluated. The cascade DPM places

the root filter in the first stage and part filters sequently in

following stages. In each stage, hypothesis can be pruned if

its score is below a pre-learned threshold. The time cost of

each step in cascade DPM is shown in Fig. 1. It has accel-

erated DPM by one order, however, all these three steps are

still prohibitive.

In the first stage of cascade, correlation is calculated

densely between root filter and feature map, while in fol-

lowing part stages, correlation is only calculated sparsely

for unpruned hypotheses. In this paper, different method-

s are used to accelerate the two kinds of computation. We

learn discriminative low rank root filter in first stage for both

efficient dense correlation and safe pruning of unpromis-

ing hypotheses after the correlation. For parts, we design

more aggressive pruning by exploring the first order neigh-

borhood information. Besides, the HOG feature extraction

is also accelerated by look-up tables. With these three ac-

celeration techniques, the proposed method is 4 times faster

than the cascade DPM (shown in Fig. 1). We show details

of these three techniques in following three sections.

4. Discriminative Low Rank Root Filter
In this part, we aim to reduce the cost on computation of

root score, which is the result of dense correlation between

HOG feature map and root filter. The acceleration comes

from the separability and linearity of correlation. Suppose

we have a 2D feature map K ∈ Rm1×n1 and a 2D filter

F ∈ Rm2×n2 with rank r (r ≤ min(m2, n2)). With the

SVD decomposition, F can be expressed as:

F =

r∑

i=1

σiuiv
T
i , (3)

where σi ∈ R is the i-th singular value. Herein ui ∈
Rm2×1, vi ∈ Rn2×1. With this expression, it can be easily

proved that:

K ◦ F = K ◦
r∑

i=1

σiuiv
T
i =

r∑

i=1

σi((F ◦ ui) ◦ vTi), (4)

where ◦ denotes the correlation operator. In the last term,

the correlation is firstly conducted on each column by 1D

filter ui, and then on each row by 1D filter vi. This proce-

dure requires r(m2 + n2)m1n1 multiplications1, while the

original 2D correlation need m2n2m1n1 multiplications. It

is easy to see that the combination of two 1D correlations

in Eq. 4 needs fewer multiplications if the rank r is small

enough, so that we expect to have low rank root filter for

computation efficiency.

Besides the low rank property, the ability to distinguish

objects and backgrounds is also preferred for the root filter,

in order to efficiently prune negative hypotheses after the

correlation. In the following part, we describe how to learn

this kind of discriminative low rank root filter.

Matrix based representations are used to simplify the no-

tation. Let the dimension of HOG cell be l. The i-th 2D

HOG feature plane of root specified by γ of image I is de-

noted as {Φi(γ, I)}1≤i≤l, and the i-th 2D plane of root filter

is denoted as {Wi}1≤i≤l. We denote diag{Wi}1≤i≤l as W
and diag{Φi(γ, I)}1≤i≤l as Φ(γ, I). The correlation score

can then be denoted as Tr(WTΦ(γ, I)), where Tr(·) is the

trace operator. One traditional way to get the discriminative

root filter is SVM based learning, where the filter is expect-

ed to distinguish true object hypotheses from backgrounds.

Given M training samples, W can be learned by SVM:

min
W

1

2
‖W‖2F+C

∑

M

max(0, 1−ymTr(WTΦ(γm, Im))), (5)

where ‖ · ‖F is the Frobenius norm. ym ∈ {−1, 1} is the

label of hypothesis specified by γm and Im, where 1 indi-

cates object and −1 indicates background. The first term is

used for regularization, and the last term is used to measure

the loss in detection.
As aforementioned, the root filter is desired to be low

rank for efficient correlation computation. Motivated by re-
cent works on matrix completion [2], we use additional nu-
clear norm to constrain the rank of W in learning:

min
W

μ‖W‖∗ +
1

2
‖W‖2F (6)

+C
∑

M

max(0, 1− ymTr(WTΦ(γm, Im))),

where ‖ · ‖∗ is the nuclear norm. μ controls the trade-off

between the efficiency and loss in detection. Despite Eq. 6

being convex, there are two difficulties in optimization. The

first is the large number of negative samples, for which we

use the hard sample mining procedure similar to [11]. The

1In implementation, ui is replaced with the “dot product” result σi ·ui

to avoid additional multiplications of σi at runtime.

249324992499

second is the convergence when training set is fixed, for

which we adopt the proximal gradient method [29].

Denoting the sum of the last two terms in Eq. 6 as f(W)
(which is also convex), one sub-gradient of f(W) can be

formulated as:

∇f(W) = W + C
∑

M

h(W,γm, ym, Im), (7)

where h(W,γm, ym, Im) is set to be:{
0 if ymTr(WTΦ(γm, Im)) ≥ 1
−ymΦ(γm, Im) otherwise.

(8)
Defining Y as a local region of W , the sub-gradient

satisfies the Lipschitz condition ‖∇f(W) − ∇f(Y)‖F ≤
Lf‖W − Y ‖F , where a conservative Lf is set to be
cM (which is a constant in this problem), since that
‖Φ(γm, Im)‖F can be naturally bounded by a constant c.
A quadratic approximation of the objective function in Eq.
6 by Taylor expansion can be formulated as:

Q(W,Y) = μ‖W‖∗ + f(Y) (9)

+Tr(∇f(Y)T (W − Y)) +
Lf

2
‖W − Y ‖2F .

It can be easily proved that Q(W,Y) is the tight upper

bound of the Eq.6 due to the Lipschitz condition of sub-

gradient. Defining a matrix G = Y − 1
Lf
∇f(Y), Eq. 9 can

be minimized by the following problem instead:

argmin
W

Q(W,G) = argmin
W

μ‖W‖∗ + Lf

2
‖W −G‖2F .

(10)
Suppose the SVD decomposition of G is UΣV T , the

closed form solution to Eq. 10 can be obtained as (see [1]):

W = UDτ (Σ)V
T , (11)

where Dτ (Σ) = diag({max(σi − τ, 0)}), and τ = μ/Lf .

The Eq. 9 can be iteratively optimized according to a se-

quences of {Yk} once the the training set is fixed. In

each iteration, following the advice in [29], we set Yk =

Wk + tk−1−1
tk

(Wk −Wk−1), and tk =
1+
√

4t2k−1+1

2 .

The details of the optimization procedure in root filter

learning are shown in Alg. 1. We use standard hard nega-

tive sample mining procedure according to the learned W
in the outer loop, and then refine W by mined samples in

the inner loop. The initialization of W is set to be root filter

used in the first stage of cascade DPM [10], which is the

original DPM root filter with PCA dimension reduction. In

experiments, the rank of filter in each plane is 2 or 3, which

is about 1 times faster than the original full rank filter for

correlation. Moreover, since that the root filter is discrimi-

natively learned, it is able to prune many negative hypothe-

ses. Note that the root filter at the first stage of cascade is

not necessarily to be optimal for the whole DPM, and we

can re-compute scores for unpruned hypotheses with origi-

nal root filter at later stage.

Algorithm 1 Proximal Gradient Algorithm for Discrimina-

tive Low Rank Root Filter Learning

Input: We set W0 and W1 to be the root filter after PCA in o-

riginal DPM. t0 = t1 = 1 and k = 1. Initial training set

{ΓM , IM} is initialized by all positive samples and sampled

negative samples.

Output: Discriminative low rank root filter W
1: while Not Converged do
2: Mine hard negative samples with W to update the training

set {ΓM , IM}.

3: while Not Converged do
4: Yk ← Wk +

tk−1−1

tk
(Wk −Wk−1).

5: ∇f(Yk) ← Yk + C
∑

m h(Wk, γm, ym, Im)
6: Gk ← Yk − 1

Lf
∇f(Yk).

7: (Uk,Σk, Vk) ← svd(Gk)
8: Wk+1 ← UkD u

Lf
(Σk)V

T
k

9: tk+1 ← 1+
√

4t2
k
+1

2
, k ← k + 1

10: end while
11: W ← Wt.

12: end while

5. Neighborhood Aware Cascade
In this part, we focus on the reduction of parts computa-

tion cost by neighborhood aware cascade.

Cascade DPM [10] improves the efficiency by pruning

unpromising hypotheses early. Starting from the calculation

of root score s0(γ) in the first stage for each hypothesis γ,

parts are evaluated sequently in following stages. The score

of the t-th (t ≥ 1) stage is defined as:

st(γ) = st−1(γ) + wT
t φa(pt, I)− dTt φd(pt, p0), (12)

where each stage evaluates a part. There are two pruning

criteria in [10]. The hypothesis γ can be pruned directly if

the t-th stage satisfies that st(γ) < ρt, where ρt is a pre-

defined threshold. By traversing optimal part location in a

local region, the deformation pruning is adopted if the score

st(γ) minus deformation cost is below ζt. However, there

are still two kinds of redundancy can be reduced for further

acceleration, as discussed in the following part.

The first redundancy, which is always ignored by pre-

vious works, exists in evaluating positive hypotheses. It is

well known that an object instance always active multiple

overlapping detections. A merge step such as non-maximal

suppression (NMS) is usually adopted to eliminate these

overlapping hypotheses and finally preserve the detection

with the highest score. The redundancy is that we only need

one per overlapping detection group, but all of them pass

the whole cascade. In experiments we test the cascade DP-

M and find that one final detection corresponds to average

21.85 detections before NMS step (with default threshold).

We name these eliminated overlapping positive hypotheses

as semi-positive hypotheses. They can take about half of the

249425002500

time (most hypotheses in later stages belong to this case),

and we want to prune them early to save computation.

The second redundancy exists in evaluating negative hy-

potheses. In traditional cascade based pruning, each hy-

pothesis is evaluated independently. Nevertheless, the pro-

cedure ignores the fact that there has great dependency a-

mong detection scores in neighborhood regions. For ex-

ample, a hypothesis with very low score indicates that it-

s neighborhoods probably have very low score and do not

need to be evaluated any more. We name these negative

hypotheses with low score neighborhood as semi-negative

hypotheses and want to prune them before explicitly evalu-

ating their scores at certain stages.

Motivated by [5], we use the “first order” information

in DPM cascade pruning to avoid the two kinds of redun-

dancy. That is, besides explicitly calculating stage score,

we can also estimate it according to their neighborhood-

s by first order approximation. We name this cascade as

neighborhood aware cascade. Let the neighborhood of γ be

N(γ). We add the following two first order pruning criteria

to decide whether γ is pruned or passed to next stage (the

formal proofs can be found in supplementary material).

Semi-Positive Pruning: If ∃γ′ ∈ N(γ) which satisfies

that st(γ
′) > st(γ)+μt, γ is pruned without evaluating left

stages. Herein μt is a pre-learned threshold. It is reasonable

since that if score of a hypothesis is much lower than its

neighborhood, it will be pruned in NMS step even it passed

all the cascade.

Semi-Negative Pruning: If score of a hypothesis at the t-
th stage is below a threshold st(γ) < νt, all the hypotheses

in its neighborhood region N(γ) are pruned without eval-

uating. This is because the score of a hypothesis can be

bounded by its neighborhoods under first order approxima-

tion.

The details of the neighborhood aware cascade for DP-

M are listed in Alg. 2. Z(γ) in Alg. 2 indicates whether

γ is pruned or not. The neighborhood N(γ) is set to be a

5×5 region centered at γ empirically after cross-validation.

The algorithm is started from root score computation with

the learned low rank root filter. The lines 9-15 in Alg. 2 are

used to find the best part location by searching a local region

Δ(p0, t) and add its score. In the final step, we also use NM-

S to merge overlapping hypotheses, but the number is much

fewer than the cascade DPM. In implementation, similar to

[10], PCA is used to simplify the appearance in early stages,

and then original full filters are used at late stages. Anoth-

er useful detail is that part scores can be cached to avoid

repeated calculation by its neighborhoods.

To learn the thresholds {μt, νt, ρt, ζt}, we run original

DPM detector on labeled object hypotheses and their neigh-

borhoods, and cache their scores of root and parts. The op-

timal threshold should be as large as possible for aggressive

pruning, but must ensure not prune true object hypotheses.

Algorithm 2 Neighborhood Aware Cascade in DPM

Input: Pre-learned thresholds {μt, νt, ρt, ζt}, hypothesis set Γ of

an input image I , index set Z with all value initialized by 1.

Output: Detection set D
1: Calculate the root score of all hypotheses in first stage by

dense correlation between feature map and low rank root filter.

2: for t = 1 to n do
3: for γ ∈ Γ & Z(γ) = 1 do
4: if s(γ) ≤ νt then
5: Z(N(γ)) ← 0
6: else if s(γ) ≤ ρt or s(N(γ))− s(γ) > μt then
7: Z(γ) ← 0
8: else
9: f ← −∞

10: for p ∈ Δ(p0, t) do
11: if s(γ)− dTt φd(p, p0) > ζt then
12: f ← max(f, wT

t φa(p, I)− dTt φd(p, p0))
13: end if
14: end for
15: s(γ) ← s(γ) + f
16: end if
17: end for
18: end for
19: D ← NMS(Γ(Z = 1))

Let the object hypothesis training set be X , we set ρt =
minγ∈X st(γ), and ζt = minγ∈X(st(γ) − dTt φd(pt, p0)),
where dTt φd(pt, p0) is the deformation cost. The μt and νt
are defined based on neighborhoods of labeled positive hy-

potheses. We set μt = minγ∈X(st(γ) − max(st(N(γ))))
and νt = minγ∈X st(N(γ)). Although it is better to learn

thresholds from a new validation set, we find that learning

thresholds from the training set is good enough in experi-

ments.

We note that in experiments, the semi-negative pruning

mainly appears in early stages, the semi-positive pruning

mainly appears in later stages, and the traditional “zero or-

der” pruning appears in all stages. A comparison between

cascade [10] and proposed neighborhood aware cascade on

the number of pruned parts in each stage is shown in Fig. 2.

We also try to use neighborhood aware pruning in the first

stage for root (instead of dense correlation in line 1 of Al-

g. 2), but we find that it is not as efficient as dense low rank

correlation.

6. LUT HOG

In this part we show how to dramatically reduce the com-

putation cost while generating exactly the same HOG fea-

ture.

The HOG feature map is constructed on each scale in-

dependently by resizing input image. For each scale, the

pixel-wise feature map, spatial aggregation and normaliza-

tion are operated in sequence. In pixel-wise feature map

249525012501

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pr
un

ed
 P

ar
t N

um
be

r

Stage

Number of Pruned Part at Each Stage

Cascade DPM

Our Neighborhood Aware
Cascade

Figure 2. Average pruned part number at each stage on VOC 2007.

step, the gradient of each pixel is discretized into different

partitions according to the orientation. In spatial aggrega-

tion step, the gradient magnitude of each pixel is added to

its corresponding bins in four cells around it with bilinear

interpolation weight. Finally, a normalization step is ap-

plied to gain the invariance by normalizing feature vector

with energy of four cells around. By analyzing a popular

and well optimized implementation in [12], we find that the

first two steps takes most of the time. The analysis here is

also valid for implementations in [8, 22].

We use look-up table (LUT) to accelerate the first two

steps for HOG. With the LUT, the runtime computation is

replaced with simpler and more efficient array indexing op-

eration. It is based on the fact that the pixels in image are

represented by “uint8” integral numbers. They can only

generate limited cases of gradient orientation and magni-

tude, so that can be computed in advance and stored as part

of model initialization. LUT is also valid for the compu-

tation of the bilinear interpolation weight in spatial aggres-

sion step since that the possible bilinear weight number is

the HOG bin size.

Take the pixel-level feature map computation for exam-

ple. Since pixels are in range of [0, 255], the gradients at x
and y directions are in range of 511 integers [−255, 255].
We pre-calculate three 511× 511 look-up tables T1, T2 and

T3, where T1, T2 and T3 store the index of contrast sensi-

tive and insensitive orientation partition, and the magnitude

for possible gradient combinations in x and y directions, re-

spectively. In runtime, these three values for each pixel can

be indexed in T1, T2 and T3 instead of explicit computation.

The LUT based HOG computation is very simple and

easy for implementation. Our implementation based on

LUT is 6 times faster than the implementation in [11] on

the same hardware, which clears up the time bottleneck in

computing HOG feature.

7. Experiments
To evaluate the speed and accuracy of the proposed

method, experiments are conducted on Pascal VOC 2007

object detection task [9]. Due to the special interests on

pedestrian and face in real applications, we also conduc-

t experiments on challenging Caltech pedestrian detection

task [7] and AFW face detection task [36].

7.1. Pascal VOC 2007

On Pascal VOC 2007, the proposed method is imple-

mented based on DPM release42 [12]. Besides the im-

plementation of DPM release4, we compare accelerated

DPM versions, including cascade [10], branch-bound [16],

coarse-to-fine [22] and FFT [8]. All these methods except

coarse-to-fine [22] use the default setting and model in DP-

M release4, where the number of levels in an octave is 10,

HOG bin size is 8, part number for each component is 8

and component number for each category is 6. For coarse-

to-fine DPM, the setting advised by the paper [22] is used,

where component number is 4. The average feature extrac-

tion time, detection time and full time of the 20 categories

are reported in Tab. 1, where the detection time sums the

root and parts computation time. For fair comparison, all

the codes run on the same PC with 2.66GHz Intel X5650

CPU, and only one thread is used in reporting Tab. 1. The

accuracy on Pascal VOC 2007 testset (shown in Tab. 2) is

measured by average-precision (AP) [9].

Table 1. Average time (measured by second) on Pascal VOC 2007.

Note that 6 components are used for each category and the times

are measured on a single thread implementation.

Feature Extraction Detection Full Time

DPM [12] 0.46 11.77 12.23

Branch-Bound (DPM) [16] 0.46 2.75 3.21

Cascade (DPM) [10] 0.46 0.99 (0.15+0.84) 1.45

FFT (DPM) [8] 0.48 0.98 1.46

Coarse-to-fine (DPM) [22] 0.67 0.99 1.66

Proposed Method 0.07 0.22 (0.08+0.14) 0.29

Different DPM methods get similar accuracy on Pascal

VOC. Cascade [10], FFT [8] and coarse-to-fine [22] get

similar 10 times acceleration over the DPM release4. With

three acceleration techniques proposed in this paper, the

proposed method runs 4 times faster than these accelerat-

ed DPM methods. Compared with the cascade DPM, pro-

posed method takes 1/2 time in calculation of root, 1/6 time

in calculation parts and 1/7 time in calculation of HOG fea-

ture. Proposed method runs at 3-4 FPS for a category with

6 components per image on Pascal VOC. When paralleliza-

tion is allowed, e.g. one thread for a component, the speed

of proposed method is up to 15 FPS.

One may also be interested in the comparison between

Viola-Jones based detector and proposed method for ob-

ject detection. Detectors are trained on Pascal VOC based

on the state-of-the-art Viola-Jones style detector ACF [4],

with DPM style mixture components. Although ACF is one

2We use release4 instead of release5, mainly due to that most algo-

rithms compared are based on release4. Generally speaking, release5

would give a slight higher accuracy with exactly the same speed.

249625022502

Table 2. Average-Precision (AP) of different methods on 20 categories of Pascal VOC 2007 testset.
plane bicycle bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mean

DPM [12] 29.2 56.1 9.9 16.5 24.6 45.7 54.9 17.2 21.6 23.1 14.4 10.3 57.6 47.6 41.9 12.3 18.0 28.2 44.2 40.1 30.7

Branch-Bound (DPM) [16] 24.1 56.1 0.0 9.1 22.2 42.1 53.6 9.1 19.2 16.2 9.1 9.1 56.7 46.0 40.0 9.1 9.1 24.5 42.3 37.2 26.7

Cascade (DPM) [10] 27.6 56.2 9.9 16.6 24.7 45.5 55.0 17.3 21.6 22.8 14.4 10.4 57.7 48.0 41.8 12.3 18.1 28.6 44.3 40.1 30.6

FFT (DPM) [8] 30.1 56.2 9.8 15.0 23.7 48.3 54.8 16.4 22 22.4 18.1 10.5 56.3 46.4 40.9 12.4 17.7 29.7 42.6 37.2 30.5

Coarse-to-fine (DPM) [22] 27.9 54.8 10.2 16.1 16.2 49.7 48.3 17.5 17.2 26.4 21.4 11.4 55.7 42.2 30.7 11.4 20.9 29.1 41.5 30.0 28.9

Proposed Method 27.1 57.9 9.9 16.1 24.2 45.2 54.1 17.1 20.9 22.7 14.4 10.3 57.1 47.8 41.5 12.2 18.1 27.8 44.2 38.5 30.4

times faster (i.e., 0.12s per image) than proposed method, it

can only get half the accuracy (i.e., 15.4 mean AP).

7.2. Caltech Pedestrians

Caltech pedestrian benchmark [7] is one of the most

challenging pedestrian detection task due to large appear-

ance variations in occlusion, pose, deformation and resolu-

tion. It is taken as a testbed to compare proposed method

with other state-of-the-art methods for pedestrian detection.

Following the protocol in [7], set00-set05 are used to train

model and set06-10 are used for test. The “reasonable” set-

ting in [7] is used to report the performance, where pedes-

trians above 50 pixels in height of each 30 frames are taken

into consideration.

We report ROC and mean miss rate of the top method-

s3 plus Viola-Jones and HOG in Fig. 3. Since this paper

just considers the frame-wise detection, only methods with-

out usage of in-frame and between-frame context are com-

pared. The proposed method is on par with the best perfor-

mance method MT-DPM [33] and outperforms the Viola-

Jones style detector ACF [4] by 2%. These three methods

largely outperform other methods. We compare the speed

of these top three methods. The number of scales evaluat-

ed per octave is 5 and the mixture component number is 1,

which are good enough for pedestrian detection task. In this

setting, the proposed method runs at 10 FPS, while the MT-

DPM runs at 1.2 FPS with FFT based acceleration. The well

optimized ACF runs at 21 FPS with lower accuracy. When

6 cores are used for parallelization (mainly for HOG feature

in this experiment), speed of the proposed method is about

40 FPS, which is fast enough for most applications.

7.3. AFW Faces

The proposed method is also validated on AFW face de-

tection task [36]. It contains 205 images with 468 faces in

the wild. Model in proposed method is trained on AFLW

dataset [18]. Training faces are split into 6 components

based on the pose annotations provided in [18] with yaw

angles in [0◦,30◦), [30◦,60◦), [60◦,90◦] and their mirrors.

Similar to the configuration for Pascal VOC, 8 parts are used

for each component.

Recall-precision curve and average precision are used to

report the performance. The results from [36] and a very re-

3Details can be found in Dollár’s website http://www.vision.
caltech.edu/Image_Datasets/CaltechPedestrians/.

10
−3

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

Pedestrian Detection ROC on Caltech Reasonable Set

95% VJ
68% HOG
61% MLS
61% MultiFtr+CSS
60% FeatSynth
57% FPDW
56% ChnFtrs
54% CrossTalk
51% ACF
48% MultiResC
48% Roerei
48% DBN−Mut
44% ACF−Caltech
42% ProposedMethod
41% MT−DPM

Figure 3. ROC curve and mean miss rate of leading methods on

Caltech “reasonable” testset. We only report pure detection meth-

ods (without context) for fair comparison. (Best viewed in color)

cent work [26] are used for comparison. Note that the TSM

(tree structure model [36]) and DPM reported in [36] are

trained on Multi-PIE, while the proposed method is trained

by more wild faces from AFLW. As shown in Fig. 4, the

proposed method obtains a 93.7% AP on AFW, which is

better than Face.com and very close to Google Picasa. The

proposed method is about 100 times faster than TSM [36].

Although accuracy is not the main concern of the paper, the

proposed method is better than TSM [36] by 5% AP. For full

yaw pose face detection in VGA image, proposed method

runs at 5 FPS on a single thread and 25 FPS if 6 threads are

used. If only frontal faces are concerned, proposed method

runs about 11 FPS (single thread) or 42 FPS (after paral-

lelization), which approximates the speed of Viola-Jones

detector in OpenCV 4. Considering the large performance

gain and similar speed, the proposed method has the poten-

tial to replace Viola-Jones detector for face detection in the

wild.

8. Conclusion

In this paper, three novel techniques are proposed to

solve the speed bottleneck of deformable part model, while

maintaining its advantage in accuracy for various detection

tasks. The proposed method runs at 4 times faster than the

previous fastest DPM method on Pascal VOC. For pedes-

trian and face detection, it runs at frame-rate with state-of-

4We note that Google Picasa has similar time cost when running the

software.

249725032503

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall Rate

P
re

ci
si

on
 R

at
e

Face Detection Precision Recall Curve on AFW

85.5% DPM
Google Picasa
Face.com
88.7% TSM−independent
87.2% TSM−shared
75.5% multiHOG
69.8% Kalal
2−view Viola−Jones
90.1% Shen−Retrieval
93.7% Proposed method

Figure 4. Face detection Precision-recall and average precision on

AFW dataset. The proposed method dramatically outperforms the

methods reported in [36] and Face.com, and very close to Google

Picasa. (Best viewed in color)

the-art accuracy, i.e. 10 FPS on a single CPU thread and 40

FPS after parallelization. We expect this work can extend

the DPM to real applications, such as video surveillance and

HCI. Techniques discussed in this paper can also be used to

accelerate related models, such as deep convolutional net-

work [19, 14], which is taken as one of the future work.

Acknowledgement
We thank the anonymous reviewers for their valu-

able feedbacks. This work was supported by the

Chinese National Natural Science Foundation Projects

61105023, 61103156, 61105037, 61203267, 61375037,

National Science and Technology Support Program Project

2013BAK02B01, Chinese Academy of Sciences Project

KGZD-EW-102-2 and AuthenMetric Research and Devel-

opment Funds.

References
[1] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding

algorithm for matrix completion. SIAM Journal on Optimization,

2010. 4

[2] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal compo-

nent analysis? Journal of the ACM (JACM), 2011. 3

[3] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan,

and J. Yagnik. Fast, accurate detection of 100,000 object classes on

a single machine. In CVPR, 2013. 2

[4] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids

for object detection. PAMI, 2014. 6, 7

[5] P. Dollár, R. Appel, and W. Kienzle. Crosstalk cascades for frame-

rate pedestrian detection. In ECCV. Springer, 2012. 2, 5

[6] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector

in the west. BMVC 2010, 2010. 2

[7] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection:

An evaluation of the state of the art. PAMI, 34, 2012. 6, 7

[8] C. Dubout and F. Fleuret. Exact acceleration of linear object detec-

tors. In ECCV. Springer, 2012. 1, 2, 6, 7

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-

serman. The pascal visual object classes (voc) challenge. IJCV, 2010.

1, 6

[10] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object

detection with deformable part models. In CVPR. IEEE, 2010. 1, 2,

3, 4, 5, 6, 7

[11] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Ob-

ject detection with discriminatively trained part-based models. PAMI,
2010. 1, 3, 6

[12] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Dis-

criminatively trained deformable part models, release 4.

http://people.cs.uchicago.edu/ pff/latent-release4/. 2, 6, 7

[13] W. T. Freeman and E. H. Adelson. The design and use of steerable

filters. TPAMI, 1991. 1

[14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hier-

archies for accurate object detection and semantic segmentation. In

CVPR, 2014. 8

[15] R. B. Girshick, H. O. Song, and T. Darrell. Discriminatively activated

sparselets. In ICML, 2013. 2

[16] I. Kokkinos. Rapid deformable object detection using dual-tree

branch-and-bound. In NIPS, 2011. 1, 2, 6, 7

[17] I. Kokkinos. Shufflets: Shared mid-level parts for fast object detec-

tion. In ICCV. IEEE, 2013. 2

[18] M. Kostinger, P. Wohlhart, P. Roth, and H. Bischof. Annotated facial

landmarks in the wild: A large-scale, real-world database for facial

landmark localization. In ICCV Workshops. IEEE, 2011. 7

[19] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification

with deep convolutional neural networks. In NIPS, 2012. 8

[20] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwin-

dow search: A branch and bound framework for object localization.

PAMI, 2009. 2

[21] R. Manduchi, P. Perona, and D. Shy. Efficient deformable filter

banks. TSP, 1998. 1

[22] M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine approach

for fast deformable object detection. In CVPR. IEEE, 2011. 1, 2, 6,

7

[23] H. Pirsiavash and D. Ramanan. Steerable part models. In CVPR.

IEEE, 2012. 2

[24] V. Prisacariu and I. Reid. fasthog - a real-time gpu implementation

of hog. Technical report, Oxford University, 2009. 2

[25] R. Rigamonti, V. Lepetit, and P. Fua. Learning separable filters. In

CVPR. IEEE, 2012. 1

[26] X. Shen, Z. Lin, J. Brandt, and W. Ying. Detecting and aligning faces

by image retrieval. In CVPR. IEEE, 2013. 7

[27] H. O. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz, C. Gey-

er, P. Felzenszwalb, and T. Darrell. Sparselet models for efficient

multiclass object detection. In ECCV. Springer, 2012. 2

[28] P. Sudowe and B. Leibe. Efficient Use of Geometric Constraints for

Sliding-Window Object Detection in Video. In ICVS’11, 2011. 2

[29] K.-C. Toh and S. Yun. An accelerated proximal gradient algorithm

for nuclear norm regularized linear least squares problems. Pacific
Journal of Optimization, 2010. 4

[30] P. Viola and M. Jones. Robust real-time face detection. IJCV, 2004.

2

[31] L. Wolf, H. Jhuang, and T. Hazan. Modeling appearances with low-

rank svm. In CVPR. IEEE, 2007. 1

[32] J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multi-pedestrian detection in

crowded scenes: A global view. In CVPR. IEEE, 2012. 1

[33] J. Yan, X. Zhang, Z. Lei, S. Liao, and S. Z. Li. Robust multi-

resolution pedestrian detection in traffic scenes. In CVPR. IEEE,

2013. 1, 7

[34] J. Yan, X. Zhang, Z. Lei, D. Yi, and S. Z. Li. Structural models for

face detection. In FG. IEEE, 2013. 1

[35] Y. Yang and D. Ramanan. Articulated pose estimation with flexible

mixtures-of-parts. In CVPR. IEEE, 2011. 1

[36] X. Zhu and D. Ramanan. Face detection, pose estimation, and land-

mark localization in the wild. In CVPR. IEEE, 2012. 1, 6, 7, 8

249825042504

