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Abstract

Multi-target tracking is an interesting but challenging
task in computer vision field. Most previous data associ-
ation based methods merely consider the relationships (e.g.
appearance and motion pattern similarities) between detec-
tions in local limited temporal domain, leading to their dif-
ficulties in handling long-term occlusion and distinguish-
ing the spatially close targets with similar appearance in
crowded scenes. In this paper, a novel data association
approach based on undirected hierarchical relation hyper-
graph is proposed, which formulates the tracking task as
a hierarchical dense neighborhoods searching problem on
the dynamically constructed undirected affinity graph. The
relationships between different detections across the spatio-
temporal domain are considered in a high-order way, which
makes the tracker robust to the spatially close targets with
similar appearance. Meanwhile, the hierarchical design
of the optimization process fuels our tracker to long-term
occlusion with more robustness. Extensive experiments on
various challenging datasets (i.e. PETS2009 dataset, Park-
ingLot), including both low and high density sequences,
demonstrate that the proposed method performs favorably
against the state-of-the-art methods.

1. Introduction
Multi-target tracking is an interesting but difficult prob-

lem. Although numerous tracking methods have been pro-

posed in literatures, their performance are unsatisfactory in

practical applications. As shown in Fig. 1 (a), most of the

previous methods focus on the pairwise relationships (e.g.

appearance and motion pattern similarities) of the tracklets

in the local limited temporal domain, rather than among

multiple tracklets across the whole video temporal domain

in a global view. When the targets walk closely with simi-

lar appearance or motion patterns, as denoted by the circles
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Figure 1. (a) describes the previous methods fail to handle the chal-

lenge that the targets walk closely with similar appearance or mo-

tion patterns, and (b) describes our undirected hierarchical relation

hypergraph based tracker successfully handle this challenge. The

circles represent different tracklets and their colors represent the

inherent patterns (e.g. appearance and motion patterns). Similar

colors represent similar patterns of the tracklets. Previous meth-

ods, which focus on the pairwise similarities of spatial-temporal

neighboring tracklets in local limited temporal domain, generate

wrong trajectories (blue splines). On the contrary, the proposed

method searching the dense neighborhoods in the tracklet relation

graph/hypergraph, which considers the similarities among multi-

ple tracklets across the temporal domain, generate correct trajec-

tories (red splines).

�1 and �2 in Fig. 1, the identity switches will follow the

previous trackers [24, 11, 26, 12, 18, 6, 4, 19, 10, 9]. To al-

leviate the issues, method based on minimum clique graphs

optimization has been developed [25], which considers the

relationships between different detections across the tem-

poral domain. However, it is hard to handle the non-linear

motion of the targets in crowded scenes, especially when

the occlusion happens, mainly due to the unreliable hypo-

thetical nodes generation in optimization process.

In this paper, an undirected Hierarchical relation Hy-

pergraph based Tracker (H2T) is proposed, which formu-

lates the tracking task as searching multiple dense neigh-

borhoods on the constructed undirected relation affinity

graph/hypergraph, as described in Fig. 1 (b). Different

from the previous methods, we consider the relationships

between different detections across the temporal domain

globally. Meanwhile, a local-to-global strategy is exploited
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Figure 2. The overlooking of the tracklets in optimization process

of the sequence PETS2009-S2L1. The tracklets in four segments

of the second layer are combined to generate the target tracklets

in the third layer. Two examples of the optimized tracklets are

presented as the red and purple pipelines in the figure.

to cluster the detections hierarchically, which greatly re-

duces the computational complexity in dense neighbor-

hoods searching, while handles the sudden variations of

the target’s appearance and motion effectively. Firstly, the

tracking video is divided into a few segments in the tem-

poral domain and the dense neighborhoods are searched in

each segment to construct multiple longer tracklets. Then

the nearby segments are merged to construct the new seg-

ment division for the next layer. These two steps are iterated

until only one segment exists in the layer, i.e. the whole

video span, and the dense neighborhoods searching is car-

ried out in that segment to obtain the final target trajectories.

The main contributions of this paper are summarized

as follows. (1) The multi-target tracking is first mod-

eled as a dense neighborhoods searching problem on

the hierarchically constructed tracklet undirected affinity

graph/hypergraph. (2) The motion properties and appear-

ance information of the targets are fully exploited in the

optimization process by considering the high-order rela-

tionships between multiple tracklets in the constructed hy-

pergraph. (3) Tracking experiments on various publicly

available challenging sequences demonstrate the proposed

method achieves impressive performance, especially when

the long-term occlusion and similar appearance challenges

happen in the crowded scene.

2. Related Work
Recently, tracking-by-detection methods [24, 11, 1, 26,

12, 2, 18, 6, 4, 3, 25, 19, 10, 9, 22, 23] become popular,

which associate multiple input detection responses in dif-

ferent frames to generate the trajectory of targets. Some re-

searchers formulate the association task as a matching prob-

lem, which match the detections with similar appearance

and motion patterns in consecutive frames, e.g. bi-partite

matching [24] and multiple frames matching [19]. Unfortu-

nately, the limited-temporal-locality degrades their perfor-

mance when long-term occlusion, complex motion, or spa-

tially close targets with similar appearance challenges hap-

pen.

Other researchers construct a k -partite graph to de-

scribe the relationships between different detections and use

some optimization methods to complete the association task

(e.g. Network flow [26, 18], K-Shortest Path (KSP) [4],

Maximum Weight Independent Set [6], Linear Program-

ming [11]). These methods, generally termed global, make

an effort to reduce or remove the limited-temporal-locality

assumption in optimization, which can overcome the first

two aforementioned challenges to some degree. However,

they also only consider the relationships of detections in

local consecutive frames, so that they have difficulties in

discriminating the spatially close targets with similar ap-

pearance. Recently, in [2], a continuous energy minimiza-

tion based method is proposed, in which the local mini-

mization of a nonconvex energy function is well found by

the standard conjugate gradient optimization. The subse-

quent work [3] designs a discrete-continuous optimization

framework, which decomposes the tracking task as two it-

eratively optimization steps, i.e. one is the data association

of the tracklets and the other one is the trajectories fitting.

In addition, some methods model the association task as a

linking problem and use the hierarchical Hungarian algo-

rithm [9, 22, 23] to complete the tracking task.

Another work related to this paper is [8], which simul-

taneously handles the multi-view reconstruction and multi-

target tracking tasks in the 3D world coordinates. In [8],

a directed graph is constructed to describe the association

relationships between candidate couplings, which are con-

stituted by the detections appeared in different camera-view

at the same time. The edges in the graph describe the asso-

ciation probability between the temporal consecutive pair-

wise couplings. Different from [8], we construct an undi-

rected hypergraph, in which the nodes represent the track-

lets, and the hyperedges are constituted by multiple track-

lets across the temporal domain. Meanwhile, since the hy-

pergraph construction and task objective are different, the

optimization strategies in these two methods are totally dif-

ferent.

3. Hierarchical Relation HyperGraph based
Tracker

Given the frame-by-frame detections, the tracking task

is modeled as a hierarchical dense neighborhoods searching

problem on the tracklet affinity relation graph/hypergraph,

which is constructed dynamically to describe the relation-

ships between the tracklets generated in the previous layer.
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Notably, a detection is regarded as a degenerate tracklet,

containing only one detection response.

The tracking video is firstly divided into u segments in

the temporal domain. Let Δl
r represent the time interval of

the r-th segment in layer l and T be the total frame length

of the video. The time interval set of these u segments is

represented as {Δl
1, · · · ,Δl

u} such that Δl
i

⋂
Δl

j = 0 and⋃u
i=1 Δ

l
i = T . A relation affinity graph is constructed in

each segment at the current layer. Let Gl
r = (V l

r ,E
l
r) repre-

sent the constructed graph in the r-th segment of l -th layer,

where V l
r and E l

r are the node and edge set of the graph

respectively. The graph node set is further represented as

V l
r = {v l

i,r}ni=1, where v l
i,r is the i-th node and n is the

number of nodes in the graph. Each node in Gl
r corresponds

to a tracklet in the current segment. The corresponding

tracklet set is defined as T l
r = {T l

i,r}ni=1. The edges of the

graph describe the relationships between different tracklets

and their weight indicate the probability of the tracklets be-

longing to the same target. Without ambiguity, we use v l
i,r

and T l
i,r interchangeably to represent the i-th tracklet in the

r-th segment at layer l in the rest of this paper.

Different from previous works where only the pairwise

relationships are considered, in this method, the high-order

relationships among multiple tracklets are integrated in the

relation graph for the first a few layers, i.e. the edges in the

graph involve more than just two vertices. In this way, the

motion and trajectory smoothness constraints of the target

can be fully used to ensure the tracking performance. We

extend the dense neighborhoods searching algorithm [14]

to handle the dense neighborhoods revealing problem in

both graph and hypergraph, and generate the longer track-

lets by stitching the tracklets in each revealed dense neigh-

borhoods. Notably, the graphs/hypergraphs in all segments

are processed in the same fashion.

After completing the dense neighborhoods searching

problem in all segments of current layer, the nearby seg-

ments are merged to generate a new segment division

Δl+1 for the next layer. Then, we also construct the

graph/hyerpgrah in each segment of Δl+1 and reveals the

dense neighborhoods on each graph/hypergraph to generate

the longer tracklets. These two steps are iterated until only

one segment remains in the layer. Finally, the dense neigh-

borhoods searching is performed again on the constructed

relation affinity graph of that segment to obtain the final tar-

get trajectories. As an example, the optimization process

from layer 2 to 3 of PETS2009-S2L1 is presented in Fig. 2.

Without ambiguity, we omit the segment index r and the

layer index l is the following sections.

4. Undirected Affinity Graph Construction

For the current segment, we construct a global rela-

tion affinity graph G = (V ,E ), which is a complete

graph describing the relationships between different track-

lets. V = {v1, · · · , vn} is the graph node set. E is the

graph edge/hyperedge set, i.e. E ⊂
m︷ ︸︸ ︷

V × · · · ×V , where m
is the number of vertices involving in each edge/hyperedge.

We use the bold symbol em = (v1, · · · , vm) to represent

the m-tuple vertices involving in the edges/hyperedges of

the graph. Obviously, the constructed graph is a hyper-

graph when m > 2 and degenerate to a general graph

when m = 2. The affinity array A of the graph G is a
m︷ ︸︸ ︷

n× · · · × n super-symmetry array, in which the elements

reflect the probability of the tracklets in em belong to the

same target. The affinity value in the array A(em) = 0, if

em /∈ E ; otherwise A(em) ≥ 0.

The design of calculating the affinity values in the undi-

rected relation affinity graph plays a central role in H2T,

which indicates how probably the tracklets belong to the

same target. We calculate the affinity value A(em) of the

edge/hyperedge em by three factors: appearance, motion

and trajectory smoothness. The appearance factor indicates

the appearance similarity between the tracklets in em; the

motion factor indicates the motion consistence between the

tracklets in em; and the smoothness factor indicates the

physical smoothness of the merged tracklets constituted by

the tracklets in em. Therefore, the edge affinity value is

calculated as:

A(em) = ω1Aa(e
m) + ω2Am(em) + ω3As(e

m), (1)

where Aa(·), Am(·) and As(·) are the appearance, motion

and smoothness affinity, respectively. ω1, ω2 and ω3 are

the preset balance parameters of these three factors. Obvi-

ously, if the appearing temporal domain of the tracklets vi
and vj in em overlap each other, they should not belong to

the same target, so we set A(em) = 0. Thus, we just need

to consider the case that neither two tracklets in em over-

lap each other of temporal domain, when we calculate the

appearance, motion and smoothness affinities.

4.1. Appearance Affinity

The appearance of an object is a crucial part to disam-

biguate it from the background and other objects. For our

H2T, two kinds of features in the first and last frames of the

tracklet are adopted to describe its appearance, i.e. color

histogram feature and shape gradient histogram feature. We

use 8 bins for each channel of RGB color histogram and 36
dimensions for shape gradient histogram. Without loss of

generality, the tracklet vi is assumed to appear before vj in

temporal domain. Then the appearance affinity is calculated

as follows:

Aa(e
m) =

∑
vi,vj∈em

∑
k=1,2

λkH(f̃k(vi), f̂k(vj)), (2)
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where f̃1(vi) and f̃2(vi) are the color and shape histograms

of vi’s last frame, f̂1(vi) and f̂2(vi) are the color and shape

histograms of vi’s first frame, H(·, ·) represents the cosine

distance between two feature vectors and λ1, λ2 are the pre-

set balance parameters.

4.2. Motion Affinity

A defining property of tracking is that the targets move

slowly relative to the frame rate, leading to a fact that the

velocity of a target can be set as a constant in a small tem-

poral domain, which is powerful enough to constrain the

trajectories of the targets. The motion affinity reflects the

motion consistency of the tracklets in em , which is defined

as:

Am(em) =
∑

vi,vj∈em

Sm(vi, vj), (3)

where Sm(vi, vj) is the motion similarity between the track-

lets vi and vj . Specifically, there is only one detection re-

sponse in each tracklet of the first layer, leading to no mo-

tion information contained in each tracklet. So we set the

motion affinity value Am(em) = 0 at the first layer.

We assume the tracklet vi appears before vj . Let Dvi =

{dvi
s }|Tvi

|
s=1 be the detection set of the tracklet vi in ascend-

ing order of temporal domain, where dvi
s is the s-th detec-

tion in the tracklet and |Tvi | is the number of detections

in vi. We define a linear motion function P(�(·),Δt , �υ),
which generates a predicted position starting from �(·), i.e.

P(�(·),Δt , �υ) = �(·) +Δt · �υ, where �(·) is the position of

the detection, Δt is the time gap and �υ is the constant ve-

locity in the temporal domain. Let t(dvi
s − d

vj
s ) be the time

gap between the detections dvi
s and d

vj
s . Due to fact that

the strong correlations between nearby frames and the weak

correlations between distant frames, we only use τ detec-

tions in the last a few frames of vi and the first a few frames

of vj to calculate the motion similarity between them. To

reduce the influence of noise, the deviations of both vi
backward prediction and vj forward prediction are used to

measure the motion consistency between the two tracklets.

Let �vip,q(d
vi
li
) = P

(
�(dvi

li
), t(dvi

li
− d

vj
1 ),

�(d
vi
p )−�(d

vi
q )

t(d
vi
p −d

vi
q )

)
be

the predicted position starting from the detection dvi
li

with

the average velocity between the positions of dvi
p and dvi

q ,

li = |Tvi | is the number of detection responses in the track-

let Tvi . Then, the motion similarity between two tracklets

vi and vj is calculated as

Sm(vi, vj) =
τ∑

p=2

p−1∑
q=1

exp
(
− ‖�(dvi

li
)− �vjp,q(d

vj
1 )‖2/σ2

m

)

+

li−1∑
p=li−τ

li∑
q=p+1

exp
(
− ‖�(dvj

1 )− �vip,q(d
vi
li
)‖2/σ2

m

)
. (4)

4.3. Trajectory Smoothness Affinity

The target trajectories should be continuous and smooth

in spatio-temporal domain, which provides us with effec-

tive information to measure the confidence of the tracklets

in em belonging to the same target. We firstly merge the

tracklets in the hyperedge em according to their appear-

ing time to get the hypothetical tracklet Tem . Let Dem =⋃m
i=1{dvi

j }lij=1 be the sorted detection response set in the

tracklet Tem according to the ascending order of temporal

domain, where li = |Tvi | represents the number of detec-

tion responses in the tracklet. We sample some detections in

the tracklet Tem with equal step δ to get the fitting detection

point set Df
em = {di}1≤i≤∑ |Tvi

|
i=1+k ·δ,k∈N

. The remained detection

point set is Dr
em = Dem \Df

em . We use Df
em to get the fitted

trajectory T̂em of the merged hypothetical tracklet using the

cubic spline fitting algorithm, and calculate the deviations

between the detection points in the set Dr
em and the points

in the fitted trajectory T̂em with the same time index. Thus,

the smooth affinity of hyperedge em is calculated as:

As(e
m) = exp

(
−

∑
di∈Dr

em

‖�(di)− �(T̂em (t(di)))‖2/σ2
s

)
,

(5)

where �(di) is the position of the detection response di,
t(di) is the appearing time of the detection response di, and

T̂em (t(di)) represents the detection response in the trajec-

tory T̂em at time t(di).

5. Tracklets Dense Neighborhoods Searching
After constructing the tracklet relation graph, we reveal

the dense neighborhoods on it. The core problem in dense

neighborhoods revealing is how to get the number of neigh-

borhoods and the number of nodes in each dense neighbor-

hood. Here, the number of neighborhoods and the num-

ber of nodes in each neighborhood are regarded as the hid-

den variables in optimization process, which are inferred

by maximizing the average affinity value of the neighbor-

hoods. In this way, multiple dense neighborhoods can be

successfully discovered. Then, the final tracklets in each

segment can be obtained by stitching the tracklets in each

neighborhood correctly. In this section, we detail the dense

neighborhoods searching in each segment.

To ensure all dense neighborhoods are revealed, we set

each node in the graph as a starting point and search its

dense neighborhood. If the tracklet belongs to a real dense

neighborhood, the affinities between it and other nodes in

this real dense neighborhood are usually large. Thus, its

the dense neighborhood will be found out. On the contrary,

if the tracklet has weak relationships with other tracklets,

the affinities between them will be low, which indicates that

it does not belong to any coherent dense neighborhoods.

Thus, the tracklet will be treated as a false positive and ig-
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nored in the final clusters. For a starting point vp, we aim to

find out its dense neighborhood N (vp), which contains the

maximal average affinity value. The optimization problem

is formulated as

N ∗(vp) = arg max
N (vp)

C(vp ∪N (vp))

s.t. N (vp) ⊂ V , vp /∈ N (vp), |N (vp)| = k .
(6)

where C(vp ∪ N (vp)) is the affinity measure function, that

reflects the affinity distribution in the graph. Let U =
{vp}∪N (vp) represent the set containing the vertex vp and

its k neighborhood vertices. Thus, the subset U ⊂ V con-

tains k + 1 vertices. Let y ∈ R
n be the indicator vector of

the subset U , i.e. yi = 1, if vi ∈ U ; otherwise, yi = 0.

Then, the subjects in (6) are converted to
∑n

i=1 yi = k + 1,

yi ∈ {0, 1} and yp = 1. The first two constraints reflect

that there exists k + 1 tracklets belonging to the same tar-

get, which is indicated by the solution y , and the last one

reflects the solution must contain the tracklet vp.

Let EU be the edge set corresponding to the vertex set

U . If the tracklets in U belong to the same target, most

of the edges in EU should have large affinity values. Nat-

urally, the total affinity value of the edge set EU is calcu-

lated as C̃(U ) =
∑

em∈EU
A(em). In our tracking task, the

affinity values in the graph/hypergraph are all non-negative,

i.e. A(em) ≥ 0. Obviously, C̃(U ) usually increases as

the number of vertices in subset U increases. Thus, it is

more reasonable to use the average affinity value to de-

scribe the confidence of the dense neighborhoods than the

total affinity value, which can successfully handle the di-

mension diversity between different dense neighborhoods.

Since
∑n

i=1 yi = k + 1, there are (k + 1)m summands in

C̃(U ). The average value C(U ) is taken as the objective to

indicate the true dense neighborhood, that is

C(U ) =
1

(k + 1)m
C̃(U ) =

∑
em∈EU

A(em)

m︷ ︸︸ ︷
y1

k + 1
· · · ym

k + 1
.

Then the optimization problem in (6) can be further simpli-

fied as:

max
x

g(x ) =
∑

em∈EU

A(em)

m︷ ︸︸ ︷
x1 · · · xm

s.t.

n∑
i=1

xi = 1, xi ∈ {0, ε}, xp = ε.

(7)

where xi =
yi

k+1 and ε = 1
k+1 . Essentially, this is a combi-

natorial optimization problem, which is NP-hard. To reduce

its complexity, the subjects in (7) are relaxed to xi ∈ [0, ε],
i.e. 0 ≤ xi ≤ ε. Then, the pairwise updating algorithm [13]

is used to solve the problem in (7) effectively. Please refer

to [13] for more details about the optimization strategy of

the problem in (7).

6. Post-Processing

As discussed in section 5, we set each node in the re-

lation graph as a starting point to get the optimal clusters

(dense neighborhoods) Ψ = {ψi}ni=1 and the corresponding

average affinity values, where n is the total number of start-

ing points. The average affinity value reflects the reliability

of the neighborhood to be correct. Ψ is sorted to get the pro-

cessed clusters Ψ̃ = {ψ̃i}ni=1 according to the average affin-

ity values in the descending order. Let Ψ∗ be the optimal

clusters after post-processing. We set Ψ∗ = ∅ at first and

add the clusters in Ψ̃ sequentially. For the i-th component

ψ̃i ∈ Ψ̃, we check whether it intersects with the clusters in

Ψ∗. If there is no intersection between ψ̃i and all clusters in

Ψ∗, we add ψ̃i directly to Ψ∗, i.e. Ψ∗ ← Ψ∗ ⋃{ψ̃i}. Other-

wise, we use the designed Conservative Strategy or Radical
Strategy to add the cluster ψ̃i in different layers. Suppose

the cluster ψ̃i intersects with ψ∗
k. In the first a few layers in

optimization, the tracklets are so short that contain limited

evidence to determine which target it belongs to. To avoid

identity switches, a Conservative Strategy is designed as re-

moving the intersection part from the cluster ψ̃i and then

adding it to Ψ∗, i.e. ψ̃i ← ψ̃i/ψ
∗
k and Ψ∗ ← Ψ∗ ⋃{ψ̃i}.

On the other hand, the tracklets in the last a few layers con-

tain enough evidence to determine which cluster it belongs

to. Thus, in order to reduce the fragmentations, a Radical
Strategy is designed as directly merging the clusters ψ̃i and

ψ∗
k, i.e. ψ∗

k ← ψ∗
k∪ψ̃i. In this way, the post-processed dense

neighborhood set Ψ∗ is obtained. According to the dense

neighborhood set Ψ∗, the optimal tracklets in the segment

are acquired by stitching the tracklets in each cluster.

7. Experiments

We evaluate H2T on six challenging publicly available

video sequences, including both high-density and low-

density sequences. Five of them are part of the PETS2009

database [15] and the rest one is the ParkingLot sequence

from [25]. Notably, we track all the targets in the 2D image
plane. For the quantitative evaluation, we rely on the widely

used CLEAR MOT metrics [5]. The Multi-Object Track-

ing Accuracy (MOTA) combines all errors (False Nega-

tives (FN), False Positives (FP), Identity Switches (IDs))

into a single number. The Multi-Object Tracking Precision

(MOTP) averages the bounding box overlap over all tracked

targets as a measure of localization accuracy. Mostly Lost

(ML) and Mostly Tracked (MT) scores are computed on the

entire trajectories and measure how many Ground Truth tra-

jectories (GT) are lost (tracked for less than 20% of their life

span) and tracked successfully (tracked for at least 80%).

Other metrics include Recall (Rcll), Precision (Prcsn), Frag-

mentations of the target trajectories (FM) and False Alarms

per Frame (Fa/F).

As discussed in [17], the input detection responses and
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manually annotated evaluation groundtruth greatly influ-

ence the quantitative results of the tracking performance.

For fair and comprehensive comparison, we use the same

input detection responses and manually annotated evalu-

ation groundtruth for all trackers in each sequence and

take some tracking results directly from the published pa-

pers. Since some trackers complete the tracking task in 3D

world coordinates, similar as [16], we evaluate the track-

ing performance in 3D world coordinates for the sequences

from PETS2009. 2D evaluation is exploited on the Park-

ingLot sequence because of the lack of camera parameters.

For the 3D evaluation, the hit/miss threshold of the dis-

tance between the output trajectories and the groundtruth

on the ground plane is set to 1m. For the 2D evalua-

tion, the hit/miss threshold of the intersection-over-union of

the bounding boxes between the output trajectories and the

groundtruth is set to 50%. Table 1 presents the quantitative

comparison results of our H2T and seven other state-of-the-

art trackers [18, 2, 4, 3, 25, 19, 16]. Some qualitative track-

ing results of H2T are presented in Fig. 3. Although MOTA

reveals the comprehensive performance, IDs, FM and MT

still play important roles in determining performance of the

tracker. As expected, our H2T outperforms the state-of-

the-art trackers in IDs, FM and MT metrics on most of the

six sequences and gives comparable or even better perfor-

mances in MOTA simultaneously. Specifically, due to the

different settings of the tracking area, depicted by the high-

lighted region in PETS2009 sequences in Fig. 3, the track-

ing results of [8, 9] in PETS2009 sequences are not listed

here for comparison.

7.1. Implementation Details

We implement H2T in C++ without any code optimiza-

tion. Given the detection responses, the proposed method

runs about 11-fps in the PETS2009 sequences and 6-fps in

the ParkingLot sequence. The experiments are carried out

on a Intel 3.2GHz PC platform with 16 GB memory.

The reference parameters used in this paper are presented

as follows. The weight parameters in the affinity value cal-

culation of (1) are, ω1 = 0.6, ω2 = 0.2, and ω3 = 0.2.

The balance parameters between the RGB color histogram

and shape gradient histogram of (2) are, λ1 = 0.1 and

λ2 = 0.04. The sigma in motion and trajectory smoothness

affinity values calculation of (4) and (5) are, σ2
m = 5.0 and

σ2
s = 4.0. We use 4 and 3 order hypergraph in the first and

second layers, respectively. The traditional graph is used

for the remained layers. Every 6-8 frames are combined to

generate the segments for the 1st layer and 3-5 segments are

combined for the remained ones. For the post-processing

strategy of H2T, we use the Conservative Strategy for the

first two layers and the Radical Strategy for the remaining

ones.

7.2. Low-Density Sequences

PETS2009-S2L1. S2L1 is the most widely used se-

quence in multi-target tracking task. It consists of 795
frames and includes the non-linear motion, targets in close

proximity and a scene occluder challenges. The detector

may fail when the targets walk behind the scene occluder,

which greatly challenges the performance of the trackers.

Although the results presented in Table 1 seem to saturate

on MOTA metric, our tracker achieves the lowest IDs (5)

and highest MT (22).

ParkingLot. The sequence consists of 1000 frames of

a relatively crowded scene. There are up to 14 pedestri-

ans walking in parallel in a parking lot. It includes fre-

quent occlusions, missed detections, and parallel motion

with similar appearances challenges. As shown in Table 1,

our tracker outperforms other trackers in nearly all evalua-

tion metrics. Our MOTA, MT, IDs and FM are 88.4%, 11,

21 and 23 respectively. Notably, H2T almost tracks all the

targets successfully and achieves the lowest IDs (less than

the second lowest one by 31).

Discussion. As presented in Table 1, in these two se-

quences, H2T outperforms other trackers by reliably high

MOTA and MT as well as stably low IDs and FM. Just con-

sidering the local similarities of detections, it is hard for

other trackers [18, 4, 2, 3] to achieve robust tracking perfor-

mance, especially when two targets with similar appearance

walk closely. Note that our H2T performs well in this chal-

lenge by considering the similarities among multiple differ-

ent tracklets in a global view.

7.3. High-Density Sequences

PETS2009-S2L2. S2L2 consists of 436 frames with

high dense crowd. Note that it contains 74 pedestrians mov-

ing non-linearly. The severe occlusion happens frequently

in this sequence. Our tracker has the best performance in

MOTA, ML, FN, Rcll, Prcsn and has comparable perfor-

mance in other metrics.

PETS2009-S2L3. S2L3 is a challenging sequence with

high crowd density. It consists of 240 frames with up to

44 pedestrians moving non-linearly. In addition, this se-

quence also includes frequent occlusions, missed detections

and illumination variation challenges. H2T presents the per-

suasive tracking performance with the highest MOTA, MT,

ML, Rcll and Prcsn.

PETS2009-S1L1. PETS2009-S1L1-1 and PETS2009-

S1L1-2 are two dense sequences including 221 and 241
frames respectively and both of them include the targets

with linear motion. These two sequences are originally in-

tended for person counting and density estimation. H2T not

only gives the impressive MOTA, but also stands out with

the highest MT as well as lowest IDs.

Discussion. Compared to the low-density sequences,

the superiority of H2T on high-density sequences is more

12811287



Table 1. Quantitative comparison results of our H2T with other state-of-the-art trackers. The input detection responses and evaluation

groundtruth used in each sequence are presented. The tracking results of the methods marked with the asterisk are taken directly from the

published papers and the others are obtained by running the publicly available codes with the same input detection responses and evaluation

groundtruth used in our tracker. The symbol ↑ means higher scores indicate better performance while ↓ means lower scores indicate better

performance. The red and blue color indicate the best and the second best performance of the tracker on that metric.

Sequence Method MOTA ↑ MOTP ↑ GT MT ↑ ML ↓ FP ↓ FN ↓ IDs ↓ FM ↓ Rcll ↑ Prcsn ↑ Fa/F ↓
PETS-S2L1 ∗Anton et al. [16] 90.6% 80.2% 23 21 1 59 302 11 6 92.4% 98.4% 0.07
(Detection [21]) ∗Berclaz et al. [4] 80.3% 72.0% 23 17 2 126 641 13 22 83.8% 96.3% 0.16
(Groundtruth [15]) Anton et al. [2] 86.3% 78.7% 23 18 1 88 417 38 21 89.5% 97.6% 0.11
(795 frames) Anton et al. [3] 88.3% 79.6% 23 19 0 47 396 18 14 90.0% 98.7% 0.06
(up to 8 targets) Pirsiavash et al. [18] 77.4% 74.3% 23 14 1 93 742 57 62 81.2% 97.2% 0.12

H2T 92.7% 72.9% 23 22 0 62 222 5 10 94.4% 98.4% 0.08

PETS-S2L2 ∗Anton et al. [16] 56.9% 59.4% 74 28 12 622 2881 99 73 65.5% 89.8% 1.43
(Detection [20]) ∗Berclaz et al. [4] 24.2% 60.9% 74 7 40 193 6117 22 38 26.8% 92.1% 0.44
(Groundtruth [15]) Anton et al. [2] 48.5% 62.0% 74 15 14 301 3850 152 128 53.9% 93.7% 0.69
(436 frames) Anton et al. [3] 48.0% 61.6% 74 15 11 245 3957 143 125 52.6% 94.7% 0.56
(up to 33 targets) Pirsiavash et al. [18] 45.0% 64.1% 74 7 17 199 4257 137 216 49.0% 95.4% 0.46

H2T 62.1% 52.7% 74 27 3 640 2402 125 175 71.2% 90.3% 1.47

PETS-S2L3 ∗Anton et al. [16] 45.4% 64.6% 44 9 18 169 1572 38 27 51.8% 90.9% 0.70
(Detection [20]) ∗Berclaz et al. [4] 28.8% 61.8% 44 5 31 45 2269 7 12 30.4% 95.7% 0.19
(Groundtruth [15]) Anton et al. [2] 51.2% 54.2% 44 7 10 144 1366 82 64 58.1% 92.9% 0.60
(240 frames) Anton et al. [3] 46.9% 57.8% 44 7 18 68 1589 73 57 51.3% 96.1% 0.28
(up to 42 targets) Pirsiavash et al. [18] 43.0% 63.0% 44 5 18 46 1760 52 72 46.0% 97.0% 0.19

H2T 55.3% 53.2% 44 12 9 149 1272 36 40 61.0% 93.0% 0.62

PETS-S1L1-2 ∗Anton et al. [16] 57.9% 59.7% 36 19 11 148 918 21 13 64.5% 91.8% 0.61
(Detection [15]) ∗Berclaz et al. [4] 51.5% 64.8% 36 16 14 98 1151 4 8 55.5% 93.6% 0.41
(Groundtruth [15]) Anton et al. [2] 48.0% 64.5% 36 9 12 35 1292 17 12 50.0% 97.4% 0.15
(241 frames) Anton et al. [3] 54.4% 64.3% 36 15 11 54 1102 24 17 57.4% 96.5% 0.22
(up to 20 targets) Pirsiavash et al. [18] 45.4% 66.8% 36 9 14 6 1367 38 32 47.1% 99.5% 0.02

H2T 57.1% 54.8% 36 18 8 34 1071 4 7 58.6% 97.8% 0.14

PETS-S1L1-1
(Detection [15]) Anton et al. [2] 40.0% 69.4% 46 9 20 34 2236 25 18 41.5% 97.9% 0.15
(Groundtruth [15]) Anton et al. [3] 37.6% 65.8% 46 9 19 50 2291 44 36 40.1% 96.8% 0.23
(221 frames) Pirsiavash et al. [18] 32.8% 76.5% 46 7 22 30 2502 35 42 34.5% 97.8% 0.14

(up to 42 targets) H2T 41.1% 71.9% 46 11 19 5 2237 11 10 41.5% 99.7% 0.02
ParkingLot ∗Zamir et al. [25] 90.4% 74.1% 14 - - - - - - 85.3% 98.2% -
(Detection [7]) ∗Shu et al. [19] 74.1% 79.3% 14 - - - - - - 81.7% 91.3% -
(Groundtruth [7]) Anton et al. [2] 60.0% 70.7% 14 3 1 162 756 68 97 69.3% 91.3% 0.65
(1000 frames) Anton et al. [3] 73.1% 76.5% 14 11 0 253 326 83 70 86.8% 89.4% 1.01
(up to 14 targets) Pirsiavash et al. [18] 65.7% 75.3% 14 1 1 39 754 52 60 69.4% 97.8% 0.16

H2T 88.4% 81.9% 14 11 0 39 227 21 23 90.8% 98.3% 0.16

obvious. In the crowded scene, e.g. PETS2009-S2L2,

PETS2009-S2L3, PETS2009-S1L1-1, and PETS2009-

S1L1-2, the appearance of the targets are similar with each

other, and the occlusion happens frequently among the tar-

gets, which greatly challenges the robustness of the track-

ers. As shown in Table 1, H2T outperforms other track-

ers in high-density sequences mainly due to the dense

neighborhoods searching on tracklet relation hypergraph

and the local-global hierarchical structure in optimization,

which considers the relationships among multiple track-

lets globally. However, our tracker obtains relative worse

performance in MOTP metric, especially in the sequences

PETS2009-S2L2 and PETS2009-S2L3, mainly due to the

non-linear motion of the targets when it is occluded and

our linear interpolation based trajectory recover mechanism

makes it hard for our tracker to recover the precise target

states in the occluded frames. On the other hand, other

methods achieve higher MOTP, e.g. [18] and [3] always fail

to identify the targets when the occlusion happens and miss

the targets completely, reflected by the MT and FN metrics.

The targets state in each frame of these trackers are gen-

erated by the input detection responses, which are precise

enough to obtain the higher MOTP. Since the best perfor-

mance are achieved in the most important metrics for the

multi-target tracking task, i.e. MOTA, MT, IDs and FM, we

can conclude that our H2T works best.

8. Conclusion

In this paper, a hierarchical dense neighborhoods

searching based multi-target tracker is proposed. The

multi-target tracking is formulated as a dense neighbor-

hoods searching problem on the multiple relation affinity

graphs/hypergraphs constructed hierarchically, which con-

siders the relationships between different tracklets across

the temporal domain to restrain the IDs and Fragmentations.

The appearance, motion and trajectory smoothness prop-

erties are naturally integrated in the graph affinity values.

Then, the dense neighborhoods searching is solved by the

pairwise updating algorithm effectively. Experimental com-

parison with the state-of-the-art tracking methods demon-

strate the superiority of our tracker. In future work we plan

to make our tracker reach real-time performance by more

efficient implementation.
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ParkingLot PETS2009-S1L1-1

PETS2009-S2L2 PETS2009-S2L3

PETS2009-S1L1-2 PETS2009-S2L1

Figure 3. Tracking results of our tracker in sequences ParkingLot, PETS2009-S1L1-1, PETS2009-S2L2, PETS2009-S2L3, PETS2009-

S1L1-2, and PETS2009-S2L1. The highlight area of PETS2009 sequences is the tracking area, which is set to be the same as [16].
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