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Abstract

Pose and expression normalization is a crucial step to
recover the canonical view of faces under arbitrary condi-
tions, so as to improve the face recognition performance.
An ideal normalization method is desired to be automat-
ic, database independent and high-fidelity, where the face
appearance should be preserved with little artifact and in-
formation loss. However, most normalization methods fail
to satisfy one or more of the goals. In this paper, we
propose a High-fidelity Pose and Expression Normaliza-
tion (HPEN) method with 3D Morphable Model (3DMM)
which can automatically generate a natural face image in
frontal pose and neutral expression. Specifically, we first-
ly make a landmark marching assumption to describe the
non-correspondence between 2D and 3D landmarks caused
by pose variations and propose a pose adaptive 3DMM fit-
ting algorithm. Secondly, we mesh the whole image into a
3D object and eliminate the pose and expression variation-
s using an identity preserving 3D transformation. Finally,
we propose an inpainting method based on Possion Editing
to fill the invisible region caused by self occlusion. Exten-
sive experiments on Multi-PIE and LFW demonstrate that
the proposed method significantly improves face recogni-
tion performance and outperforms state-of-the-art methods
in both constrained and unconstrained environments.

1. Introduction
During the past decade, face recognition has attracted

much attention due to its great potential value in real world
applications, such as access control, identity verification
and video surveillance. However, in unconstrained envi-
ronment the performance of face recognition always drops
significantly because of large variations caused by pose, il-
lumination, expression, occlusion and so on. Among them
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pose and expression have always been important challenges
because they can dramatically increase intra-person vari-
ances, sometimes even exceeding inter-person variances.
To deal with the two challenges, many promising works
have been developed, which can be divided into two cat-
egories: feature level normalization and image level nor-
malization.

The feature level normalization aims at designing face
representations with robustness to pose and expression vari-
ations [21, 32, 44, 35, 42]. For instance, the Pose Adap-
tive Filter [48] adjusts its filter according to pose conditions
and extracts features on semantic consistent positions. The
High-dim LBP [21] concatenates many local descriptors to
a high-dim form and demonstrates robustness to global and
local distortions. Besides hand crafted features, discrimi-
native features can also be learned from data. Fisher vec-
tor [41], Learning Based Descriptor [17] and Probabilistic
Elastic Matching [32] use unsupervised learning techniques
to learn encoders from training examples. Convolutional
Neural Network (CNN) provides a framework to learn face
representations in a supervised form, and has achieved sig-
nificant improvements in recent years [44, 46].

The image level normalization aims to synthesize a vir-
tual canonical-view and expression-free image from one un-
der arbitrary conditions. The advantage of this category is
that it can be easily incorporated into traditional face recog-
nition framework as a pre-processing procedure. There are
2D and 3D methods. One type of 2D methods estimates a
spatial mapping (a flow), either pixel-wise or patch-wise, to
simulate the geometry transformation in 3D space, such as
Stack Flow [4], Markov Random Field [3] and Morphable
Displacement [34]. In these methods, although the face pix-
els are rearranged to the frontal view, the shape and consis-
tency are not well preserved. Another type of 2D methods
tries to learn the appearance transformations between dif-
ferent poses, such as Local Linear Regression [18] and Tied
Factor [39]. These methods use linear models to approxi-
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Figure 1. Overview of the High-Fidelity Pose and Expression Normalization (HPEN) method

mate the highly non-linear pose variations and thus cannot
always retain the identity information. Recently, FIP [50]
and SPAE [29] train high-dimensional non-linear appear-
ance transformations with deep models, achieving state-of-
the-art performance. However, it is necessary to prepare a
very large and carefully designed database, where a gallery
image under neutral condition is provided for each subject.
This requirement is not always satisfied in real application.

Since pose variations are caused by 3D rigid transfor-
mations of face, 3D methods are inherently more intuitive
and accurate. 3D methods estimate the depth information
with a 3D model and normalize faces through 3D trans-
formations. A representative method is the 3D Morphable
Model (3DMM) [10], which constructs its 3D shape and
texture model with PCA and estimates model parameters
by minimizing the difference between image and model ap-
pearance. Although proposed a decade before, 3DMM still
has competitive performance [29]. However, this method
suffers from the amazing one-minute-per-image time cost.
An alternative method is the landmark based 3D face model
fitting [5, 1, 46, 13, 12, 38], which estimates the model pa-
rameters with the correspondence between 2D and 3D land-
marks. This method is very efficient but suffers from the
problem that the semantic positions of face contour land-
marks differ from pose to pose. Besides, most 3D normal-
ization methods do not fill the invisible region caused by
self-occlusion, leading to large artifacts and non face-like
normalization results [5, 23].

In this paper, we present a pose and expression normal-
ization method to recover the canonical-view, expression-
free image with “high fidelity”, which indicates preserving
the face appearance with little artifact and information loss.
The contributions are as follows: Firstly, we make a “land-
mark marching” assumption to describe the movement of
3D landmarks across poses and propose a landmark based
pose adaptive 3DMM fitting method (Section 2). Secondly,
we propose a identity preserving normalization by mesh-
ing the whole image into a 3D object and normalizing it
with 3D transformations (Section 3). Finally, we propose

a “Trend Fitting and Detail Filling” method to fill the in-
visible region with poisson editing, leading to smooth and
natural normalization result. Based on the well develope-
d landmark detector [47], the entire normalization system
does not contain any learning procedure, leading to good
generalization performance to different environments. The
proposed method is briefly summarized in Fig. 1. The code
can be downloaded from http://www.cbsr.ia.ac.
cn/users/xiangyuzhu.

2. Pose Adaptive 3DMM Fitting

In this section, we firstly introduce the 3D Morphable
Model (3DMM) and then describe our pose adaptive 3DM-
M fitting method.

2.1. 3D Morphable Model

3D Morphable Model is one of the most successful meth-
ods to describe the 3D face space. Constructed by linear
combinations of face scans, 3DMM can approximate arbi-
trary face shape to a considerable extent. Recently, Chu et
al. [23] extend 3DMM to contain expressions as the offset
to the neutral face.

S = S +Aidαid +Aexpαexp (1)

where S is the 3D face, S is the mean shape, Aid is the
principle axes trained on the 3D face scans with neutral ex-
pression and αid is the shape weight, Aexp is the princi-
ple axes trained on the offset between expression scans and
neutral scans and αexp represents the expression weight. In
this work, we merge two popular face models with Non-
rigid ICP [2] to construct our 3DMM. The identity shape
Aid comes from the Basel Face Model (BFM) [36] and the
expression Aexp comes from the Face Warehouse [14].

To fit 3DMM to a face image, we project the face model
onto the image plane with the Weak Perspective Projection:

s2d = fPR(α, β, γ)(S + t3d) (2)
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where s2d is the 2D positions of 3D points on the image
plane, f is the scale factor, P is the orthographic projection

matrix
(

1 0 0
0 1 0

)
, R(α, β, γ) is the 3× 3 rotation ma-

trix constructed with pitch(α), yaw(β) and roll(γ) and t3d is
the translation vector. The fitting process needs to search the
ground truth 2D coordinates s2dt of 3D points and estimate
the model parameters by minimizing the distance between
s2d and s2dt:

arg min
f,R,t3d,αid,αexp

‖s2dt − s2d‖ (3)

2.2. Landmark Marching

Benefit from the current breakthrough of face alignment
algorithm [47, 16], robustly detecting face landmarks in un-
constrained environment has become possible. If we mark
the corresponding 3D landmarks on the face model, a sparse
correspondence between 3D and 2D space can be construct-
ed. Then 3DMM can be fitted with Eqn. (3), where the s2dt

and s2d are the 2D and projected 3D landmarks respectively.
However, this fitting framework has a big problem that the
landmarks on the cheek boundary are not consistent across
poses. When faces deviate from the frontal pose, the land-
marks on the contour will “move” to the face silhouette and
break the correspondence, see Fig. 2 for example.

Figure 2. The landmark marching phenomenon. The blue points
on the 3D face are standard landmark positions. The red and ma-
genta points are moved landmarks, which are also plotted on the
frontal face.

To solve the problem, Lee et al. [31] and Qu et al. [40]
detect and discard moved landmarks. This method cannot
make full use of landmark constrains. Asthana et al. [6]
build a look up table containing 3D landmark configurations
for each pose. This method depends on pose estimation and
needs a large table in unconstrained environment. In this
paper, we intend to localize the moving contour landmark-
s and rebuild the correspondence automatically. We make
an assumption called “landmark marching” to describe the
phenomenon: When pose changes, if a contour landmark
is visible, it will not move; or it will move along the par-
allel to the visibility boundary. The parallels are shown in

Fig. 3(a). In the assumption, we restrict the landmark paths
to the parallels and give clear definition of their positions.
Note that in the fitting process, pose and landmark configu-
ration depends on each other and should be estimated in an
iterative manner. To improve efficiency, we propose an ap-
proximation method to avoid iterative visibility estimation.
Observing that human head is roughly a cylinder [43] and
for a cylinder in any out-of-plane rotation (yaw and pitch),
the visibility boundary always corresponds to the generatrix
with extreme x coordinates (minimum in left and maximum
in right), see Fig. 3(b). Thus in landmark marching, if a par-
allel crosses the visibility boundary, the point with extreme
x will be the marching destination. Inspired by this obser-
vation, we first project the 3D face with only yaw and pitch
to eliminate in-plane rotation:

Sα,β = R(α, β, 0)S (4)

Then, for each parallel, the point with extreme x coordi-
nate will be chosen as the adjusted contour landmark, see
Fig. 3(c)3(d).

(a) (b)

(c) (d)

Figure 3. (a) The parallels on the mean face, the red points are
the standard landmark positions. (b) The landmark marching on a
cylinder. The left one is the frontal view, the right one is rotated
with yaw and pitch. The red lines are the generatrix corresponding
to the visibility boundary, the blue line is a parallel. (c)(d) Project
3D face with only yaw and pitch and get adjusted landmark posi-
tions. The 3D shape of (c) and (d) come from the first and third
column of Fig. 2 respectively.

With the landmark marching, the correspondence be-
tween 2D and 3D landmarks is rebuilt, and the 3DMM fit-
ting can be summarized as solving the equation:

s2d land = fPR[S +Aidαid +Aexpαexp + t3d]land (5)

where s2d land is the 2D landmarks and the subscript land
means only the adjusted 3D landmarks are selected. Pa-
rameters needed to be solved are the shape αid, expression
αexp, pose f,R, t3d and landmark configuration land. Each
group of parameters can be solved when the other three
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are fixed. In detail, firstly the αid and αexp are initial-
ized to zero and pose is coarsely estimated with only facial
feature landmarks using Weak Perspective Projection [11],
then landmark marching is conducted to update landmark
configuration land. After initialization, the parameters are
estimated by solving Eqn. (5) in an iterative manner (4 times
in this work). Since all steps are linear problems and are on-
ly related with landmarks, the fitting is very efficient, which
can always finish in less than 0.2s.

3. Identity Preserving Normalization
In this section, we demonstrate how to normalize pose

and expression while preserving the identity information.
As we know, the shape and texture of a face contain the
main identity information and should be kept constant when
normalizing. With a fitted 3DMM, we can directly mapping
pixels as the face texture and retain the shape parameters
during normalization. Besides, the appearance surrounding
the face region also contain discriminative information for
face recognition [30, 19]. However, most previous works
either only keep the internal face region and dropping the
information around the face [5, 23, 50, 29] or warp the pix-
els of surrounding region to the fixed positions so that some
shape information is lost [9]. In this work, we propose to
estimate the depth information of the whole image and thus
the pose and expression can be easily corrected by 3D trans-
formation to preserve as much identity information as pos-
sible.

(a) (b) (c) (d)

Figure 4. 2D and 3D view of 3D-meshing. (a) The boundary an-
chors. (b) The surrounding anchors. (c) The background anchors.
(d) Triangulation and better view of depth information.

3.1. 3D Meshing and Normalization

In order to ensure the smooth transition from the face
region to its background after pose normalization, except
face region, we also estimate the depth of the external face
region and the background. Specifically, we estimate the
depth of anchors from three groups (shown in Fig. 4). One
is the boundary anchors which are located on the face con-

tour and adjusted by landmark marching (Fig. 4(a)). The
second group is the surrounding anchors which enclose a
larger region containing headback, ear and neck (Fig. 4(b)).
The depth of these anchors can be approximately estimated
by enlarging the 3D face with increasing the scale param-
eter f and translating the nosetip to the original position.
The third is the background anchors located on the image
boundary (Fig. 4(c)), and their depth is set to the same as
the closest surrounding anchor. Once all anchors are de-
termined, we apply the delaunay algorithm to triangulate
anchors and obtain the 3D meshed face object, shown in
Fig. 4(d).

After 3D-meshing, the pose can be corrected with the
inverse rotation matrix R−1.

Simg rn = R−1Simg (6)

where Simg is the meshed face object containing 3D face
model and anchors, see Fig. 4(c),R is the estimated rotation
matrix in 3DMM fitting and Simg rn is the rigidly normal-
ized mesh, see Fig. 5(a). For expression normalization, we
set the αexp to the neutral expression weight αexp neu [23],
see Fig. 5(b). Note that the shape parameters are kept un-
changed to preserve identity information.

Figure 5. (a) The rigidly normalized mesh, the magenta points are
the boundary anchors. (b) The result of pose and expression nor-
malization. There generates a hollow region below the chin due
to expression change. We also make mesh transparent to demon-
strate the face region occluded by background mesh. (c) The result
of anchor adjustment. The boundary anchors move to the prede-
fined face contour positions and all anchors are adjusted. (d) The
normalized image where the black region is the invisible region.

3.2. Anchor Adjustment

From Fig. 5(b), one can see that after pose and expres-
sion normalization, the semantic of boundary anchors does
not correspond to the face contour due to landmark march-
ing and expression change, needing to be further adjusted.
Since anchors are related, all the anchors need to be adjust-
ed to preserve the image structure.
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We propose a graph to represent the relationships of the
anchors with the rigidly normalized mesh such as Fig. 5(a),
in which the vertices are the anchor points and the edges
are the lines connecting the vertices in the mesh. Each edge
represents an anchor-to-anchor relationship:

xa − xb = δx ya − yb = δy (7)

where (xa, ya) and (xb, yb) are two connecting anchors, δx
and δy are the offsets in x and y coordinates. In anchor ad-
justment, we move the boundary anchors to the pre-defined
positions on 3D face model and try to keep the spatial dis-
tance (δx, δy) unchanged:

xa con−xb new = xa−xb ya con−yb new = ya−yb (8)

where (xa con, ya con) is the predefined face contour posi-
tion corresponding to a boundary anchor a, (xb new, yb new)
is the new position of a connecting anchor b, which needs to
be solved, (xa, ya) and (xb, yb) are the coordinates before
adjustment. We can adaptively obtain the adjusted positions
of the other two groups of anchors by solving the equations
for each connecting a and b, which forming an equation list.
The solution can be obtained by least squares, see Fig. 5(c).
Afterwards, the normalized image can be rendered by the
correspondence between the source image and the normal-
ized image provided by the triangles, see Fig. 5(d).

4. Invisible Region Filling
If the yaw angle of face is too large, there may be some

regions become invisible due to self-occlusion. Bad fill-
ing of the occluded region will lead to large artifacts after
normalization and deteriorate recognition performance. In
recent works, Asthana et.al [5] and Chu et.al [23] leave the
occluded region unfilled, Ding et.al [24] and Li et.al [34] in-
paint the region with the mirrored pixels and the gallery face
respectively. They cannot generate a coherent face image
just like taken under frontal view. Generally, the basic idea
of dealing with self-occlusion is utilizing the facial symme-
try. However, due to the existence of illumination, facial
symmetry cannot always hold. Directly copying pixels will
lead to non-smoothness and weird illumination [24]. In this
paper, we propose a new way to deal with the invisibility:
Fitting the trend and filling the detail, which deals with
illumination and texture components separately.

4.1. Facial Trend Fitting

We define the facial trend as the illuminated mean face
texture, which represents the large scale face appearance. It
can be estimated in an efficient manner. For a 3D lambertian
object under arbitrary illumination, its appearance can be
approximated by the linear combinations of spherical har-
monic reflectance bases [49]. These bases are constructed

from the surface normal n and albedo λ, which are deter-
mined by the 3DMM and the mean face texture (Fig. 6(a))
respectively in this paper. By minimizing the difference
between the original image and the spherical harmonic re-
flectance, we can get the illumination parameters:

γ∗ = arg min
γ
‖I −Bγ‖ (9)

where I is the image pixels corresponding to 3D points as
in Fig. 6(b), B is the spherical harmonic reflectance bases
and γ is a 9-dimensional illumination vector. Then the fa-
cial trend can be represented as Bγ∗, see Fig. 6(c).

(a) (b) (c)

Figure 6. (a) The mean texture. (b) The source image and the
projected 3D face. (c) The facial trend.

4.2. Facial Detail Filling

The difference between the image pixel and the facial
trend can be seen as the illumination-free facial detail,
which roughly satisfies the symmetry assumption and can
be estimated with mirroring. In order to further keep the
smoothness of filling boundary, we copy gradients instead
of pixels. Perez et al. [37] propose an image editing method
based on the poisson equation, which can insert a source
object into an image seamlessly. The key of poisson im-
age editing is the poisson partial differential equation with
Dirichlet boundary condition:

∆f = w over Ω, s.t f |∂Ω = f0|∂Ω (10)

where f is the edited image to be solved, ∆ is the Laplacian
operator, w is the Laplacian value of the inserting object, Ω
is the editing region, ∂Ω is the boundary of the region and
f0 is the original image. Setting f0 as the original detail,
w as the laplacian of the mirrored detail, and Ω as the in-
visible region, the poisson editing can automatically fill the
invisible region with great consistency which is guaranteed
by the Dirichlet boundary condition. In the end, the facial
trend and facial detail are added to form the final result.
Fig. 7 demonstrates the process of facial detail filling.

5. Experiments
We evaluate the effectiveness of proposed normaliza-

tion method in the case of unconstrained (LFW) and con-
strained (Multi-PIE) face recognition problems, compared
with state-of-the-art methods. More normalization results
can be found in supplemental material.
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Figure 7. The flowchart of facial detail filling. Step 1: the differ-
ence between the face appearance and facial trend is calculated as
the detail. Step 2: The facial detail is mirrored to form the insert-
ing object. Step 3: The mirrored detail is inserted into the invisible
region (marked with black) with poisson image editing, generating
the full facial detail. Step 4: The facial trend and facial detail are
added to generate the final result.

5.1. LFW

Labeled Faces in the Wild (LFW) [28] is the most com-
monly used database for unconstrained face recognition.
There are 13223 images from 5729 subjects with variations
of expression, pose, occlusion etc. Both “Image restricted”
and “Image unrestricted” protocols are adopted in this part.
The face recognition performance is reported as the mean
accuracy on “View 2” ten splits. During evaluation, we on-
ly use the outside data to construct 3DMM (BFM [36] and
FaceWarehouse [14]) and train the landmark detector (LFP-
W [8]). For face recognition, we only use the LFW samples
strictly and no outside data is used.

Given a face image, we firstly locate the facial land-
marks automatically [47]. The proposed HPEN is then ap-
plied to eliminate the pose and expression variations. In
HPEN, we conduct invisible region filling only on samples
with yaw larger than 10◦ and directly mirror faces with yaw
larger than 40◦. For face recognition, we employ the over
complete high-dim features [22] including high-dim Gabor
(HD-Gabor) and high-dim LBP (HD-LBP) as face repre-
sentation. The discriminative deep metric learning (DDM-
L) [26] and the joint Bayesian (JB) [20] are used for restrict-
ed and unrestricted settings, respectively. The entire nor-
malization process takes about 0.8 seconds on a 3.40GHZ
CPU with matlab code.

5.1.1 Performance Analysis

Most of 3D normalization methods [5, 34, 23] only keep the
face region and cannot well deal with the invisibility. In this
section, we evaluate the benefits from the invisible region

and the background. We conduct recognition experiments
on three types of images with different level of complete-
ness. The first type “Visible” only keeps visible face region
(Fig. 8(b)), the second type “Face” contains complete face
region with invisible region filling (Fig. 8(c)) and the last
type “Full” is the fully normalized image (Fig. 8(d)).

(a) (b) (c) (d)

Figure 8. (a) The original image, (b) “Visible”, (c) “Face”, (d)
“Full”.

Table 1. The recognition accuracy on three types of images in
LFW with different protocols and features.

Setting Features Visible Face Full

Restricted
HD-LBP 91.47 92.18 92.57

HD-Gabor 90.73 92.33 92.80

Unrestricted
HD-LBP 93.43 94.25 94.87

HD-Gabor 93.58 94.73 95.25

Table 1 shows the recognition accuracy on both restricted
and unrestricted settings with different features. It is shown
that with invisible region filling, the accuracy is improved
by 1.38% with Gabor and 0.77% with LBP averagely. Con-
sidering there are only 3323 of 6000 testing pairs need invis-
ible region filling, the improvement is significant. Besides,
if we further preserve the background, there will be a stable
0.5% improvement for each feature and classifier, indicat-
ing that the external face region takes identity information
helpful for face recognition.

5.1.2 Results and Discussions

In this part, we evaluate the performance of the proposed
method following image-restricted protocol. Table 2 shows
the face recognition accuracy of different methods and
Fig. 9 shows the corresponding ROC curves.

We firstly list the results with the unsupervised learn-
ing PCA and demonstrate a 3.67% improvement by HPEN.
Note that both as 3D normalization methods followed by
high-dim feature and PCA, the HPEN outperforms the PAF
by 1.38% since we explicitly normalize the face appear-
ance. By applying DDML, the HPEN help improve the per-
formance of HD-LBP and HD-Gabor by 1.79% and 1.85%,
respectively. Although DDML can effectively learn dis-
criminative metric [26], the HPEN preprocessing is able to
further enhance the face recognition performance by sim-
plifying the learning task with normalization.
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Table 2. Mean classification accuracy and standard error on LFW
under restricted, label-free outside data protocol.

Methods Accuracy (µ± SE)
PAF [48] 0.8777± 0.0051

Convolutional DBN [27] 0.8777± 0.0062

Sub-SML [15] 0.8973± 0.0038

DDML + Fusion [26] 0.9068± 0.0141

VMRS [7] 0.9110± 0.0059

HD-Gabor + PCA (Ours) 0.8548± 0.0032

HD-LBP + DDML (Ours) 0.9078± 0.0048

HD-Gabor + DDML (Ours) 0.9095± 0.0040

HPEN + HD-Gabor + PCA 0.8915± 0.0033

HPEN + HD-LBP + DDML 0.9257± 0.0036

HPEN + HD-Gabor + DDML 0.9280± 0.0047

Figure 9. ROC curves under the LFW restricted, label-free outside
data protocol.

We further examine the effectiveness of HPEN in un-
constrained setting. Table 3 shows the mean accuracy and
Fig. 10 shows the corresponding ROC curves.

Table 3. Mean classification accuracy and standard error on LFW
under unrestricted, label-free outside data protocol.

Methods Accuracy (µ± SE)
Joint Bayesian [20] 0.9090± 0.0148

ConvNet-RBM [45] 0.9175± 0.0048

High-dim LBP [22] 0.9318± 0.0107

Aurora [33] 0.9324± 0.0044

FCN [51] 0.9438

HD-LBP + JB (Ours) 0.9347± 0.0059

HD-Gabor + JB (Ours) 0.9322± 0.0043

HPEN + HD-LBP + JB 0.9487± 0.0038

HPEN + HD-Gabor + JB 0.9525± 0.0036

The results show that HPEN improves the recognition re-
sults by 1.4% and 2.03% with HD-LBP and HD-Gabor re-
spectively, where the the combination of HPEN, HD-Gabor
and joint Bayesian reaches the state-of-the-art in unrestrict-

Figure 10. ROC curves under the LFW unrestricted, label-free out-
side data protocol.

ed setting. Besides, the performance of HPEN is competi-
tive with the facial component deep network (FCN), which
is also an image level normalization method. Different from
FCN, the proposed HPEN is learning-free, therefore good
generalization performance can be expected.

5.2. Multi-PIE

The CMU Multi-PIE Face Database (MultiPIE) [25]
contains images of 337 subjects collected under controlled
environment with variations in pose, illumination and ex-
pression. Since Multi-PIE is highly organized and most of
normalization methods are reported on this database, we
can further analyze the robustness of HPEN to pose and
expression. We conduct experiments on Multi-PIE with t-
wo setttings: Setting-1 [50, 34, 5, 29] concentrates on pose
variations. It uses images from all the 337 subjects at 7 pos-
es (−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦), with neural ex-
pression and frontal illumination (marked as 07) in all 4
sessions. The first 200 subjects are used as training set and
the rest 137 subjects are used as testing set. During eval-
uation, the frontal images of each subject from the earliest
session are used as gallery images and all remaining images
are used as probe images. To further evaluate the robustness
to simultaneous pose and expression variations, we propose
the Setting-2 which contains all the expressions including
neutral, smile, surprise, squint, disgust and scream under
poses of 0◦,−15◦,−30◦ and −45◦ in frontal illumination.
Other configurations are the same as Setting-1. This pro-
tocol is a extended and modified version of [23]. For each
setting, the rank-1 recognition rates are reported, compared
with the state-of-the-art methods.

In Setting-1, we demonstrate the robustness of our
method to pose variations. Table 5 shows the comparison
results with different normalization methods including a 3D
method of Asthna11 [5] and four 2D methods of MDF [34],
LE [17], FIP [50] and SPAE [29], all methods are conduct-
ed automatically. In this part, we sort methods into three
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Table 4. Rank-1 recognition rates for MultiPIE in Setting-2 with simultaneous pose and expression variations, the results in the brackets
are the recognition results without normalization. The expression “Smile” contains samples from both session 1 and session 3.

Expression/
Pose

Smile Surprise Squint Disgust Scream Avg

05 1(0◦) 99.31 (97.24) 98.44 (98.44) 98.44 (95.31) 95.83 (93.75) 89.01 (84.62) 96.21 (93.87)
14 0(−15◦) 98.62 (97.93) 98.44 (95.31) 98.44 (95.31) 95.83 (92.17) 90.11 (80.22) 96.29 (92.30)
13 0(−30◦) 96.55 (95.86) 95.31 (93.75) 95.31 (90.63) 94.79 (91.67) 83.52 (72.53) 93.10 (88.89)
08 0(−45◦) 93.79 (93.10) 84.38 (79.69) 95.31 (92.19) 85.42 (87.50) 70.33 (61.54) 85.85 (82.80)

Avg 97.07 (96.03) 94.14 (91.80) 96.88 (93.36) 92.97 (91.41) 83.24 (74.73) 92.86 (89.46)

level of database dependence according to the data assump-
tion they used. SPAE explicitly make the assumption that
poses are sparse and discrete, thus it is of strong database
dependence and as a result has difficulty in generalizing
to unconstrained environment. Asthna11, LE and FIP do
not utilize the data configuration, but their normalization
models are trained on the same database with the testing
set. Namely these methods make the assumption that the
testing set shares the same pose variations with the train-
ing set, thus they have weak database dependence. MDF
and HPEN do not have any assumption about the testing
set, thus are database independent. In the experiment, we
adopt the high-dim Gabor feature [22] as the feature extrac-
tor, and for better comparison we list the recognition results
with both supervised classifier (LDA) which corresponds
to SPAE, FIP, MDF, LE and unsupervised classifier (PCA)
which corresponds to Asthna11.

Table 5. Rank-1 recognition rates for Multi-PIE in Setting-1, with
the first and the second highest rates highlighted. The last colum-
n represents the database dependence, where “??” means strong
dependence, “?” means weak dependence and “-” means non de-
pendence

Methods
Pose

Dep−45◦ −30◦ −15◦ 15◦ 30◦ 45◦ avg

2D

SPAE [29] 84.9 92.6 96.3 95.7 94.3 84.4 91.4 ??
LE [17]1 86.9 95.5 99.9 99.7 95.5 81.8 93.2 ?
FIP [50] 95.6 98.5 100.0 99.3 98.5 97.8 98.3 ?

MDF [34] 84.7 95.0 99.3 99.0 92.9 85.2 92.7 -

3D
Asthna11 [5] 74.1 91.0 95.7 95.7 89.5 74.8 86.8 ?
HPEN+PCA 88.5 95.4 97.2 98.0 95.7 89.0 94.0 -
HPEN+LDA 97.4 99.5 99.5 99.7 99.0 96.7 98.6 -

In this setting, the HPEN demonstrates competitive re-
sults especially for large poses (±45◦). Among geome-
try based normalization method, the HPEN outperforms the
3D Asthna11 and 2D MDF by 7.2% and 5.9% respectively,
which may come from the good treatment for the invisible
region and background. Compared with appearance trans-
formation methods SPAE and FIP, HPEN also demonstrates
competitive results and is believed to have better generaliza-

tion ability due to the database independence. The improve-
ments from the HPEN is demonstrated in Table 6.

Table 6. The average rank-1 recognition rates across poses (from
−45◦ to 45◦ except 0◦) on the original images and the normalized
images with unsupervised and supervised classifiers.

Classifier Original Normalized Error Reduced
PCA 86.5 94.0 55.5%
LDA 97.0 98.6 53.3%

In Setting-2, we evaluate the robustness of our method
to simultaneous pose and expression variations. Table 4
shows the recognition results on both normalized and o-
riginal images to demonstrate the improvement from our
method. With HPEN, the average error of all the expres-
sions and poses is reduced by 32.26%. However, the perfor-
mance of HPEN deteriorates greatly when pose and expres-
sion are both far from the neutral condition, such as surprise
and scream in −45◦. The main reason is that landmark de-
tector always fails in extreme conditions where many land-
marks are too close and some are even invisible, which leads
to inaccurate 3DMM fitting and bad normalization results.

6. Conclusion
In this paper, we propose a learning-free High-Fidelity

Pose and Expression Normalization (HPEN) algorithm
which could recover canonical-view, expression-free im-
ages of good quality. With HPEN, state-of-the-art perfor-
mance is achieved in both constrained and unconstrained
environments. However, there exist disadvantages of our
method. Since HPEN fills the invisible region based on fa-
cial symmetry. If faces are occluded, the occluded region
will be also mirrored, leading bad normalization results.
This drawback will be improved in our future work.
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