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Abstract—Robust descriptor-based subspace learning with
complex data is an active topic in pattern analysis and machine
intelligence. A few researches concentrate the optimal design on
feature representation and metric learning. However, tradition-
ally used features of single-type, e.g., image gradient orienta-
tions (IGOs), are deficient to characterize the complete variations
in robust and discriminant subspace learning. Meanwhile, dis-
continuity in edge alignment and feature match are not been
carefully treated in the literature. In this paper, local order
constrained IGOs are exploited to generate robust features. As
the difference-based filters explicitly consider the local contrasts
within neighboring pixel points, the proposed features enhance
the local textures and the order-based coding ability, thus dis-
cover intrinsic structure of facial images further. The multimodal
features are automatically fused in the most discriminant sub-
space. The utilization of adaptive interaction function suppresses
outliers in each dimension for robust similarity measurement
and discriminant analysis. The sparsity-driven regression model
is modified to adapt the classification issue of the compact fea-
ture representation. Extensive experiments are conducted by
using some benchmark face data sets, e.g., of controlled and
uncontrolled environments, to evaluate our new algorithm.

Index Terms—Discontinuity, image gradient, order features,
sparse representation, subspace learning.

I. INTRODUCTION

ROBUST subspace learning [1]–[4] has been an active
area in pattern recognition and machine learning, and

it can be roughly categorized by supervised, unsupervised,
and semisupervised methods. As one particular case of super-
vised learning, face recognition has wide applications in public
security and commercial developments. It has been shown
that a carefully modeled feature representation plays a critical
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role in robust face recognition [5]. Many algorithms have
been proposed to deal with the effectiveness of feature design
and extraction [6], [7]; however, the performance of many
existing methods is still highly sensitive to variations of
imaging conditions, such as outdoor illumination, exaggerated
expression, and continuous occlusion. These complex varia-
tions are significantly affecting the recognition accuracy in
recent years [8]–[10].

Appearance-based subspace learning is one of the sim-
plest approach for feature extraction, and many methods
are usually based on linear correlation of pixel intensities.
For example, Eigenface [11] uses eigen system of pixel
intensities to estimate the lower rank linear subspace of
a set of training face images by minimizing the �2 dis-
tance metric. The solution enjoys optimality properties when
noise is independent identically distributed Gaussian only.
Fisherface [12] will suffer more due to the estimation of
inverse within-class covariance matrix [13], thus the per-
formance will degenerate rapidly in the cases of occlusion
and small sample size. Laplacianfaces [14] refer to another
appearance-based approach which learns a locality preserv-
ing subspace and seeks to capture the intrinsic geometry
and local structure of the data. Other methods such as those
in [5] and [15] also provide valuable approaches to supervised
or unsupervised dimension reduction tasks.

A fundamental problem of appearance-based methods for
face recognition, however, is that they are sensitive to imag-
ing conditions [10]. As for data corrupted by illumination
changes, occlusions, and inaccurate alignment, the estimated
subspace will be biased, thus much of the efforts concentrate
on removing/shrinking the noise components. In contrast, local
feature descriptors [15]–[19] have certain advantages as they
are more stable to local changes. In the view of image pro-
cessing and vision, the basic imaging system can be simply
formulated as

�(x, y) = A(x, y) × L(x, y) (1)

where �(x, y) is image pixel value, A(x, y) is the surface
Albedo, and L(x, y) is the illuminance at each point (x, y).
Then the task is to present a robust feature representation from
A(x, y) for image �.

Gradient-based methods have been used for texture descrip-
tion and image classification due to its robustness to local
variations and efficiency to computation. In the gradientface
method [8], after the orientation-based feature generation, a
�1-type metric is exploited for feature matching. By integrat-
ing both time and storage requirement, Vu and Caplier [20]
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Fig. 1. Block diagram of our algorithm. (a) Input images. (b) Two directional gradient responses are generated, and then gradient orientations and block-wise
histograms are used to formulate the basic feature representation. (c) AIFs are exploited to enhance the subspace learning/fusion and address the possible
discontinuous problem. (d) Sparsity-based classifier is proposed to complete the recognition.

proposed to enhance the face recognition performance by opti-
mizing the patterns of oriented edge magnitudes descriptor.
Huang et al. [21] extracted the histograms of second-order
gradients to capture the curvature-related geometric properties
of the neural landscape. Tzimiropoulos et al. [3] first gener-
ated the image gradient orientation (IGO) features, and then
studied the properties of IGO in the cosine-based subspace
learning method. The robustness of IGO to occlusions is exper-
imentally displayed to validate the effectiveness for feature
extraction. However, simple orientation features are not suf-
ficient to characterize the complete variations in robust and
discriminant subspace learning. As shown in later, the local
order-based gradients can also be validated effective in feature
description. Meanwhile, the discontinuous scenarios in edge
alignment and feature match are not been deeply discussed.
Motivated by that gradient information can enhance the edge
response, Lei et al. [22] proposed a novel local gradient order
pattern (LGOP), taking into account the ordinal relationship
of gradient responses in local region. However, properties of
the feature subspace have not been further addressed, and the
ability to deal with discontinuity, e.g., brought by occlusion
and expression variations, is not considered.

To address these problems, a enhanced IGO descriptor is
proposed in this paper. A flowchart of our enhanced fea-
ture representation system is displayed in Fig. 1. As the
difference-based gradient filters explicitly consider the local
contrasts within neighboring pixel points, the proposed feature
transformation enhances the local texture description ability,
thus further discovers intrinsic structure of facial images. The
utilization of adaptive interaction function (AIF) suppresses
outliers in each dimension for robust similarity measurement
and discriminant analysis. Different weights are automati-
cally determined and assigned to the two-modal features to
boost discriminant subspace learning. Accordingly, our learn-
ing system consists of three sequential stages, including local
order-based image descriptor, enhanced subspace fusion, and
sparse identity coding. The main contributions are summarized
as follows.

1) A enhanced IGO descriptor is proposed to robust feature
extraction. The local order features describe the spacial
information, neighbor contrasts, and region histograms,
thus they are predominant in dealing with complex
image data.

2) AIF is used as a robust similarity measurement
between two high-dimensional vectors. As a second-
order statistics, it reflects the closeness in a local region,
and thus it has the potential ability to deal with the
discontinuity problem.

3) It presents a natural regularization in similarity mea-
surement and descriptor enhancement. The structured
regularization weights and the discriminant subspace are
simultaneously modeled in a supervised criterion, and
then alternatively optimized.

It is worth noting that the convolutional neural net-
works (CNNs)-based deep learning methods [23] are proved
effective in the case of large-scale data. However, the main
drawbacks of CNNs include their high computational com-
plexity and difficult parameter tuning. Moreover, visualization
of the filtered images is also inconvenient. Thus our method
will not be widely compared with the large-scale data-based
deep learning methods.

The rest of this paper is organized as follows. Section II
presents our new algorithm, i.e., the successive stages includ-
ing local feature generation, discriminant subspace fusion,
and the least angle-based identity prediction. The algorithm
is evaluated from several technical aspects in Section IV.
In Section V, extensive experiments are conducted to com-
pare the new algorithm with several state-of-the-art methods,
and the results on the benchmark sets (controlled/uncontrolled
lighting, disguise, etc.) show the competitive performance of
our approach.

II. ENHANCED IMAGE FEATURE DESCRIPTOR

A. Local Order-Based Feature Generation

It is well known that the human visual system is more
sensitive to local changes in contrast than the absolute magni-
tudes of the signal [16]. The difference-based gradient features
have biological justifications and they can improve the texture
description performance.

The features are generated by two steps. Let us focus the
image structure on (1). For simplicity, the position index (x, y)
in this section is omitted. First, taking the x- and y-axis
gradient responses of image I, we have

�x = (A × L)x ≈ Ax × L + A × Lx

�y = (A × L)y ≈ Ay × L + A × Ly.
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Fig. 2. Basic generation procedure of LGOP. The order-based feature is first generated by average filtering and neighborhood sampling in the gradient
domain. Note that two ways of neighbor sampling are shown in the dashed square. The serial vector is retrieved by using a permutation-based coding book,
and then the order number is defined as the final feature code.

According to the hypothesis of Albedo, the nature of L is
determined by the lighting source, while A is determined by
the characteristics of the surface of object. A common assump-
tion that L varies very slowly (i.e., Lx ≈ 0 and Ly ≈ 0) while
A can change abruptly. Thus the hypothesis of Albedo can be
exploited for generating lighting-insensitive features, and then
the equations can be further approximated to �x = Ax × L
and �y = Ay × L. Therefore, �a = �y./�x ≈ Ay./Ax is
robust for light variations, where ./ is the matrix point divi-
sion operator. Notice that the orientation feature �a has been
used in gradientface [8], patterns of oriented edge magni-
tudes (POEM) [20], and IGO [3] methods for face recognition.
However, they do not consider the spatial information and
statistical structure of �x and �y.

Assume that ∇x and ∇y are the x- and y-directional gradient
operators, respectively

∇x =
⎡
⎣

−1 −2 −1
0 0 0
1 2 1

⎤
⎦, ∇y =

⎡
⎣

1 0 −1
2 0 −2
1 0 −1

⎤
⎦

then �x and �y can be efficiently obtained via the local con-
volution operators �x = �∗∇x and �y = �∗∇y. In practice,
before generating the gradient features, the images are prepro-
cessed by a Gaussian filter G(x, y, σ ) to eliminate pixel noise,
where the variance σ is set to 0.2 throughout this paper.

The second step of feature generation will be implemented
by incorporating the local intensity order pattern (LIOP) [24],
which is proposed to address the visual description and feature
detection issues. It takes the order of elements in data vec-
tor into account and maps the data vector to its permutation
space. Lei et al. [22] further extended the ordinal relation-
ship into the gradient domain. The basic scheme of LIOP
has been illustrated in Fig. 2. Given a d-dimensional vector
P = [p1, p2, . . . , pd] ∈ R

d and a possible permutation set � of
integers {1, 2, . . . , d}, the mapping from P to � is defined as
follows. First, the elements in P are sorted in a nondescend-
ing order, i.e., pi1 ≤ pi2 ≤ · · · ≤ pid . Second, the subscript
list i1, i2, . . . , id is considered as the mapping result in set �
and is denoted using a unique scalar (LIOP code). To avoid
ambiguity, ps ≤ pt is defined as if and only if: 1) ps < pt or
2) ps = pt and s < t. It is obvious that for a d-dimensional
vector, there are d! possible permutations.

For each pixel of an image � that has two gradient response
matrices �x and �y, its neighbors are sampled and sorted in
nondescending order. The order index is then mapped to its

permutation space as in LIOP. Finally, the ordered patterns
generated from �x and �y are obtained for further processing.

A detailed description for the instance in Fig. 2 is explained
as follows. First, in the 2-D gradient domain, i.e., �x or �y,
the mean filter of 3 × 3 size is exploited for convolution.
In particular, for the 3 × 3 window as shown in the figure,
its mean value is 47. The same operation is applied to other
3×3 windows, and then we have the neighborhood data. In the
second stage, for any pixel (denoted by star for emphasis), its
four neighborhoods vector (20, 14, 68, and 47) is sampled and
labeled by (1, 2, 3, and 4) in the clockwise sense. Then the four
neighbors are sorted as index vector (2, 1, 4, and 3) in ascend-
ing order. Finally, we retrieve the index vector from the code
book. We find that its position in the code book is eight, i.e.,
the eighth column, so we code the position of star as digital
number 8. Notice that the code book can be previously saved
in the memory/program for real-time retrieve and coding.

To preserve the spatial information in face image, a num-
ber of 2-D histogram features are extracted in local regions.
Specifically, each 2-D image that has been locally ordered is
divided into 8 × 8 blocks, and then the histogram is counted
from each block respectively. In this way, histogram features
are extracted from the spatial regions so that they can cap-
ture more representative and discriminant ability of facial
images. These 2-D histogram features extracted from different
local regions are vectorized and then finally concatenated to
represent the whole face.

To exploit more complementary information, we adopt
two different sampling ways, which have been shown in the
dashed square in Fig. 2, and concatenate the feature vectors
together. Notice that four neighbors are, respectively, sampled
in �x and �y to save the computational cost.

We denote the histogram feature vector of local order cod-
ings by ϕi and the vectorized orientation feature vector by θ i

for image �i from now on. We notice that θ i and ϕi may
be heterogeneous and hence, we cannot directly concatenate
them together for feature representation. Besides, the higher
dimension of ϕi than that of θ i may bring over-domination in
numerical computation. A natural way to deal with these prob-
lems is weighting the features by assigning different weights
to each group

ξ i =
[ √

γθθ i√
γϕϕi

]
∈ R

M (2)

where γ = [γθ , γϕ]T ≥ 0, and it is called local order
constrained gradient orientations (LOGO) in this paper.
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The formulation of ξ i provides spatial structure and local
contrast in enhancing the discriminant capability of pure ori-
entation features, thus it presents a natural regularization way
to improve the performance of pure utilization of θ i.

B. Enhanced Discriminant Subspace Learning

Due to the high dimension of feature augment in (2),
dimension reduction is required for discriminant fusion and
efficient classification. It is usually formulated as finding a
low-dimensional and discriminant subspace, allowing larger
margins between different classes as well as more com-
pact representations within the same class. According to the
graph embedding method [1], characterizing the separabil-
ity between different classes and the compactness within the
same class can be converted to and displayed by the weights
wjk and w′

jk between different samples. Assume that V is the
projection matrix for dimension reduction, γ is the weight
vector as shown in (2), then our objective function can be
formulated as

max
V,γ≥0

J(V, γ ) =
∑n

j,k=1 wjk
∥∥VTξ j − VTξ k

∥∥2
2∑n

j,k=1 w′
jk

∥∥VTξ j − VTξ k

∥∥2
2

. (3)

Specific utilization of the weights is shown in Section IV.
However, (3) is different to traditional graph embedding

method, as the non-negative vector γ is introduced into our
formulation. The double unknowns V ∈ R

M×h and γ make
the optimization problem difficult, here h is the size of
discriminant subspace.

When the vector γ is fixed, the weighted feature vector ξ
can be viewed as regular instance of vector-type, and the objec-
tive function is degenerated to Fisher’s discriminant analysis
so that the discriminant projection matrix V can be efficiently
solved by the generated eigenvalue decomposition method.

The optimization difficulty concentrates on the compu-
tation of vector γ . Fortunately, (3) can be transformed
to its dual problem by the subspace theory. Let � =
[ξ1, ξ2, . . . , ξn], according to the representation theorem in
subspace theory [25], the projection matrix V can be repre-
sented as a linear combination of columns in �, i.e., V = �U,
where U is the coefficient matrix. As a result, we have
VT� = UT�T�.

Assume Sim(x1, x2) be any similarity function between
feature vectors x1 and x2, and

Sj =
⎡
⎢⎣

Sim
(
θ1, θ j

)
, Sim

(
ϕ1,ϕj

)
...

...

Sim
(
θn, θ j

)
, Sim

(
ϕn,ϕj

)

⎤
⎥⎦ (4)

we have

ξT
j ξ k = γ θ Sim

(
θ j, θk

)+ γ ϕSim
(
ϕj,ϕk

)
(5)

and VTξ j = UTSjγ by algebra operations. Then the function
in (3) can be reformulated as

max
U,γ≥0

J(U, γ ) =
∑n

j,k=1 wjk
∥∥UTSjγ − UTSkγ

∥∥2
2∑n

j,k=1 w′
jk

∥∥UTSjγ − UTSkγ
∥∥2

2

. (6)

Now, the matrix-vector product Sjγ can be viewed as new
feature representation which is composed of several similar-
ities, and determining the non-negative coefficient vector γ
can be interpreted as finding appropriate weights for opti-
mally dealing with LOGO. In particular, the possible over-
domination phenomenon can be alleviated by the importance-
based weighting method. By (5), we know the weights
γ θ and γ ϕ make a tradeoff between the two similarities
Sim(θ j, θk) and Sim(ϕj,ϕk).

Let Fw = ∑
j,k w′

jk(Sj − Sk)
TUUT(Sj − Sk) and Fb =∑

j,k wjk(Sj − Sk)
TUUT(Sj − Sk), the problem becomes

min
γ

γ TFwγ s.t. γ TFbγ = 1, and γ ≥ 0. (7)

It is a nonconvex quadratically constrained quadratic program-
ming problem, and its convex relaxation by adding an auxiliary
matrix B = γ γ T can be

min
γ ,B

tr(FwB) s.t. tr(FbB) = 1,

[
1 γ T

γ B

]

 0, γ 
 0.

(8)

This is a semi-definite programming (SDP) relaxation of the
nonconvex problem (7), and can be efficiently solved.

After obtaining the projection operator V or U, we are ready
to solve the out-of-sample problem as follows. For sample �t,
it is firstly transformed to LOGO feature ξ t as shown in (2),
and then embedded into the subspace by

z = VTξ t or UTStγ (9)

where St is obtained via (4). Both formulations can be
efficiently embedded into the next stage of label prediction.

We should pay attention to the similarity computation in
subspace learning. The discontinuity which is usually brought
by the image edges and local contrast-based features should
be carefully treated. Li [26] systematically studied the discon-
tinuity problem and defined a general discontinuity adaptive
Markov random fields model. It shows that the fundamen-
tal difference between various models lines in the behavior
of interaction within neighborhood instances, which is deter-
mined by the prior smoothness constraint encoded into the
energy function.

One typical example of the AIF is the so-called cor-
rentropy in information theory and signal processing [27].
Formally, correntropy is defined as a generalized similarity
between two arbitrary scalar random variables x and y, i.e.,
Vσ (x, y) = E[κσ (x − y)]. It is directly related to the probabil-
ity of how similar two random variables are in a neighborhood
of the joint space controlled by the bandwidth σ [27]. It can
be immediately inferred that Vσ (x, y) is symmetric, positive,
and bounded.

The correntropy of vectors x and y ∈ R
M is

Sim(x, y) =
M∑

m=1

E
[
κσ (xm − ym)

]
.

It has been used to obtain robust analysis and handle non-
Gaussian noise [28]. It is worth noting that the AIF/correntropy
is essentially different to general kernels. For a more detailed
discussion, refer to Section III.
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C. Classification via Sparse Regression

Recently, sparse representation-based classifiers have led
to promising results in machine learning and pattern analy-
sis [29], [30]. By the linear-core assumption, a test sample y
can be sparsely represented as a linear combination χ of the
dictionary D. Wright et al. [29] proposed the sparse represen-
tation classifier (SRC) for robust face recognition. An iterative
reweighting method robust sparse coding (RSC) is developed
by Yang et al. [31] for shrinking the influence of the partial
occlusion. He et al. [28] proposed to handle the problem by
their maximum correntropy model. In [32], we propose to use
multiple loss measurements to improve robustness and dis-
crimination of the regression model. Notice that these models
only theoretically design for the simple scenario that train-
ing without occlusions while testing with occlusions, which is
obviously restrictive in practice.

From now on, to avoid the notations confusion, the
embedded low-dimensional representation of the training
set is written as Y, in which the ith atom (column) is
yi = VTξ i = UTSiγ , and the embedded testing sample is
denoted as z (the subscript is ignored).

The classification model is formulated via

arg min
χ

‖Yχ − z‖2
2 s.t. ‖χ‖0 = ν (10)

where ‖χ‖0 denotes the �0-norm of coefficient vector χ and ν

is the expected or predefined size of nonzero entries.
Fortunately, the objective function can be efficiently solved

by the least angle regression (LARS), in which the least
angle between two potentially correlated samples is exploited
to search the optimally matched partners. The numerical
optimization details can be referred to in [33].

One advantage by using of the least angle is its sequential
and forward determination of the sparse coefficients, which
will be favorable for choosing the size of the correlated sam-
ples or the active set. In our implementation, the size of the
nonzero elements, ν, is fixed to be the number of training
samples in each class.

In the second stage for label prediction, we need to compute
the reconstruction errors between z and the class-wise dictio-
nary. The error is measured by the cosine function. Let χk
be the class-wise subvector of χ and Yk be the submatrix
of Y, both of them corresponding to the basis of class k.
We find the identity of z via maximizing the reconstruction
correlations

Label(z) = arg max
k

Sim
(
z, Ykχk

)
. (11)

In the following sections of model selection and justi-
fication, the real performance of LOGO algorithm in face
recognition is displayed. Through the sequential operations
of discriminant dictionary building and the least angle-based
sparse coding, our algorithm not only extracts discriminant
features but also further filtrates the noisy components for
imaging condition variations. Particularly, by simultaneously
using the AIF metric and the subject-based reconstruction,
the subject whose training samples illustrating the largest
correlation (interaction) with z will automatically appear,
and the corresponding label is used for identity prediction.

Algorithm 1 The Proposed LOGO Method
Input: Images {�i}n

i=1, Labels L, σ , ν, Test image �n+1
Output: U, γ , predicted label of �n+1.

1. Feature generation and augment;
1.1 �̃i = �i ∗ G(x, y, σ ), (i = 1, 2, . . . , n + 1);
1.2 φi = �̃i ∗ ∇x, ψ i = �̃i ∗ ∇y;
1.3 obtain ϕi via local order coding;
1.4 obtain θ i via arctan(ψ i./φi) and vectorization;
1.5 Return ξ i as shown in (2);

2. Kernel fusion and model optimization;
2.1 Calculate ξT

j ξ k via (5) and pool them into Sj;
2.2 Iteratively optimize U and γ ;

3. Feature embedding in the fused kernel space;
3.1 V = [ξ1, ξ2, . . . , ξn]U is projection matrix;
3.2 Dictionary Y = [VTξ1, VTξ2, . . . , VTξn];
3.3 zn+1 = UTSn+1γ is the embedded vector of �n+1;

4. Calculate sparse representation χ of zn+1 via (10);
5. Labeling �n+1 via χ and (11);

A block diagram for the complete recognition system has
been presented in Fig. 1, and the pseudocodes are presented
in Algorithm 1.

The complexity of the algorithm focuses on three
aspects: 1) similarity calculation; 2) feature extraction; and
3) classification. In detail, the computation of similarity val-
ues for every pair of vectors has a complexity of O(n2). The
alternative calculation of subspace U and weights γ , by means
of the generalized eigen-value decomposition and SDP, cost
O(n3) and polynomial time, respectively. Finally, the com-
plexity of the sparse regression is O(n3 + hn2) [33] to obtain
the identity coding vector.

III. DISCUSSION

The relationships between our algorithm and some state-
of-the-art methods, e.g., feature descriptors, similarities, and
classifiers, are discussed in this section.

A. Feature Descriptors

The utilization of image gradient responses and mean fil-
ter in feature representation relates our method to the POEM
operator [20], which is sequentially composed of gradient
responses, mean filters, and local binary patterns.

More precisely, the POEM algorithm applies the self-
similarity calculation approach from the local binary pat-
tern (LBP)-based structure on the distribution of local edge
through different orientations. To calculate the POEM codes
for one pixel, the intensity values in the calculation of con-
ventional LBP are replaced by gradient magnitudes, which
are calculated by accumulating a local histogram of gradient
directions over all pixels within a spatial patch (cell).

In a similar summarization approach, our new method can
be sequentially realized by the gradient responses, mean filter,
and LGOP descriptor. The histogram features are extracted
for each local regions to enhance the robustness to noise and
image rotations.
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From these points of view, our method is distinct from the
POEM operator on at least two aspects.

1) The LGOP features, instead of local binary patterns,
are embedded in our algorithm. In fact, LBP encodes
the ordinal relationship between the neighborhood sam-
plings and the central one to obtain robust face rep-
resentation. However, additional information like the
difference among neighboring pixels, which may be
helpful for face recognition, is ignored.

2) The histogram features are extracted in the final stage of
our method to enhance the robustness to noise, rotations,
and so on. However, in the POEM method, the histogram
features are used for spatial magnitude accumulation in
cell, thus they are extracted before LBP operations.

B. Correntropy Versus Radial Basis Kernel

The most important property of correntropy to this paper
is that it is a second-order statistic of the mapped fea-
tures. It can be proved by the knowledge in probability
and statistics. Assume the dimension of the feature space
is M and the mapping (linear or nonlinear) is ζ (x) =
[ζ 1(x), ζ 2(x), . . . , ζM(x)]T , the second-order statistic between
ζ (x) and ζ (y) is expressed by the correlation matrix

Rxy = E[ζ (x)ζ T(y)]

=
⎡
⎢⎣

E
[
ζ 1(x)ζ T

1 (y)
] · · · E

[
ζ 1(x)ζ T

M(y)
]

...
. . .

...

E
[
ζM(x)ζ T

1 (y)
] · · · E

[
ζM(x)ζ T

M(y)
]

⎤
⎥⎦.

Meanwhile, V(x, y) = E[ζ T(x)ζ(y)] = trace(Rxy). The trace
of Rxy is equal to the sum of the eigenvalues, which shows
that Vσ (x, y) is a second-order statistic in the feature space
induced by the Gaussian function. Specifically, it has been
emphasized by [27] that correntropy is the trace (assuming
centered data in reproducing kernel Hilbert space) of the cross
variance operator defined in kernel methods.

The Gaussian kernel or radial basis function (RBF) on two
vectors x1 and x2 is

Kσ (x1, x2) = exp

(
−‖x1 − x2‖2

2

2σ 2

)

where ‖x1 − x2‖2
2 is the squared Euclidean distance between

the two feature vectors and σ is a scale parameter.
Since the value of the RBF kernel decreases with distance

and ranges between zero (in the limit) and one (when x1 = x2),
it has a ready interpretation as a similarity measure. The fea-
ture space of the kernel has an infinite number of dimensions.
For σ = 1, its expansion is

K1(x1, x2) =
∞∑

j=0

(
xT

1 x2
)j

j!
exp

(
−||x1||22

2

)
exp

(
−||x2||22

2

)
.

From the definitions, we clearly observe that the RBF ker-
nel is very different from the correntropy in high-dimensional
space. Generally, global similarity that induced by the �2-norm
‖x1 − x2‖ is emphasized by the RBF and in the reproduc-
ing kernel Hilbert space. However, the local interaction in

each dimension is highlighted in the correntropy, which mea-
sures the similarity between x1 and x2 via the summarization
of every pairwise interaction. In this view, the discontinuous
problem in feature matching may be alleviated by correntropy.

C. Kernel-Based Sparse Representation Classifiers

Our recognition system can be viewed as a multikernel-
based SRCs, in which the most typical methods include
kernel-based SRC (KSRC) [34] and multiple kernel sparse
representations (MKSR) [35]. Both KSRC and MKSR exploit
the kernel-based sparse regression coefficients to complete the
classification or feature representation tasks.

The objective function of KSRC is

min
α

‖α‖1 s.t. BTk(·, y) = BTKα

in which B is a discriminant projection matrix, K is the ker-
nel matrix of the training set, k(·, y) is the nonlinear mapped
features of y, and α is the sparsest regression coefficients.
In other words, after the dictionary learning/design in the
nonlinear kernel space, the attained α of k(·, y) is directly
used to classify y. Obviously, the gradient order-based local
features and the multiple similarities fusion in the kernel-
based dimension reduction process make our method different
from the KSRC. In particular, our method extends the single
kernel function to the case of the multikernel or multicorren-
tropy, thus it can be favorable in dealing with image-based
classification tasks.

The MKSR method is proposed by Thiagarajan et al. [35]
to deal with complex visual recognition tasks, which is typ-
ical to adopt multiple features to describe different aspects
of the images. The basic dimension reduction procedure in
the multikernel space is similar to ours. However, besides
feature generation, the kernel-based sparse representation solu-
tion approach and classifier rule are very different from our
method. The multikernel coefficient vectors which are obtained
by MKSR are used to learn the kernel-based multilevel dic-
tionary. Then the updated kernel sparse representations are
conversely used to compute the graph affinities instead of
kernel-wise neighborhood. These two steps, i.e., sparse repre-
sentation and affinities update, are alternatively optimized in
an iterative manner. Finally, the support vector machine (SVM)
classifier is directly used to complete the recognition task.
These detailed analyses can clear up the relationships between
LOGO and MKSR.

IV. MODEL JUDGEMENT AND ANALYSIS

In this section, some aspects of our algorithm including
similarity function and classifier are evaluated.

The objective of discriminant subspace learning can be
achieved by setting the weights wjk and w′

jk as those in the
Fisher discriminant analysis [1]

w′
jk =

{
1/n�j , �j = �k

0, otherwise
(12)

wjk = (1/n) − w′
jk, here n�j is the number of samples labeled

by �j. The numerator and the denominator characterizes
the scatter for between-class and within-class, respectively.
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(a) (b) (c)

Fig. 3. Classification results by using different similarity functions in our dimension reduction stage. (a) Extended Yale B data. (b) FRGC uncontrolled
illumination data. (c) AR data.

TABLE I
STATISTICS FOR THE EXPERIMENTAL DATA, WHERE nc IS THE

NUMBER OF CLASSES, ns IS THE SIZE OF THE cTH CLASS

This configuration is used hereafter in our algorithm, and the
number of projection vectors is set to nc − 1, i.e., h = nc − 1,
in which nc is the number of classes.

Some statistics of the image sets used in experiments are
summarized in Table I. All images are aligned by the centers
of eyes and mouth, according to the parameter values provided
by the authors, and then resized to 56 × 46.

A. Similarities Comparison

The real performance of using different similarity functions
are compared here. Four similarity functions, i.e., linear kernel,
cosine, RBF, and correntropy, are respectively evaluated and
then compared with each other. The hyper-parameter of cor-
rentropy is fixed to 1, while that of RBF is determined by
fivefold cross-validation.

In the experiments with random sampling, the algorithm
is independently evaluated 30 times, then the statistical
tool boxplot is used to show the classification performance.
On each box, the central mark in red is the median, the edges
of the box are the 25th and 75th percentiles, and outliers are
plotted individually.

For the extended Yale B set, ten samples are randomly
chosen from each subject to build the training set, while the
remainders are used for testing. The results obtained by using
the four similarity functions are shown in Fig. 3(a). The results
of RBF present a lower median accuracy while a larger varia-
tion than those of others. It even cannot exceed the results of
the linear kernel, by which we infer that the hybrid lighting
conditions destroy the basic assumption of Gaussian distribu-
tion. Conversely, the cosine function and correntropy present
better results and the correntropy makes the extended Yale B
data correctly classified.

For the uncontrolled face recognition grand chal-
lenge (FRGC) data, three samples of each subject are
randomly chosen for training while the remainders are used

for testing. The results are shown in Fig. 3(b). The median
result of RBF is 92.5%, which is lower than 95.0% of
the linear kernel. Both results of cosine and correntropy
are higher than 96.0%, thus they display more competitive
performance of the uncontrolled FRGC data. In particular,
the median value of the correntropy is close to 98.0%, thus it
outperforms others.

For the AR data, 14 samples in each person are randomly
chosen to constitute the training set while the remainders are
used for testing. From the boxplot as shown in Fig. 3(c), we
can see that even though the variances of linear kernel and
RBF are very close to each other, the median values of lin-
ear kernel and the cosine function are lower than those of
Gaussian-based similarities. One possible reason of these con-
trasts may be attributed to the data distributions. Due to the
mixture of lighting variations and continuous occlusions, the
Gaussian-based similarities present much robustness in mea-
suring the local structure and discriminant metric for subspace
learning. In particular, the correntropy functions outperform
the instance-based kernel functions in this experimental con-
figuration.

Besides the random sampling-based experiments, the
subset-based configurations which were designed by the
authentic authors are also used to evaluate the algorithm’s per-
formance. The experimental results on the extended Yale B
and AR databases are shown below.

For the extended Yale B data, subset 1 is used for training,
and subsets 2–5 are used for testing. The lighting conditions
become worse from subsets 2 to 5. For subset 2, the light-
ing condition is very close to the training set, all the results
that using the four similarity functions can correctly recognize
the whole testing set. For subset 3, the results of kernel-based
similarity functions are lower than those of the correntropy-
based similarities, both of which obtain 100% accuracy in
this experimental setting. More evident contrasts are shown
by the results of the remainder subsets. For subset 4, the lin-
ear kernel and RBF present their accuracies lower than 90%;
however, both cosine and correntropy show their accuracies
beyond 95% in Fig. 4(a). Moreover, the result of correntropy
achieves to 98% for the testing data. The results on subset
5 display similar characteristics as subset 4 does. In particu-
lar, the correntropy outperforms other similarity functions and
obtains the best result again.
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TABLE II
COMPARATIVE RESULTS(%) OF AR SET AND LABELLED FACES IN THE WILD (LFW) SET

Fig. 4. Classification results by using different similarity functions.
(a) Extended Yale B data. (b) Session-based AR data.

For the AR database, the frequently used settings [3],
i.e., experiments 1–3, are exploited here to comparatively
study the similarity functions. Specially, images 1–4 of
session 1 for training, while:

1) in experiment 1, images 2–4 of session 2 for testing;
2) in experiment 2, images 5–7 of session 2 for testing;
3) in experiment 3, images 8–13 of session 2 for testing.

Which corresponds to the testing with expressions,
illumination, and occlusions–illumination change, respectively.
As the training instances and the testing instances are sampled
from different sessions, these experimental configurations
evaluate the generalization ability of algorithms.

In experiment 1, the result of linear kernel is obviously
lower than those of other similarities. Fig. 4(b) shows that
even though the results of other similarities are close to each
other, the correntropy presents a higher accuracy therein. In
experiment 2, the result of linear kernel has a large drop-off
when compared with others. The result of RBF is close to
that of cosine, but both of them have large accuracy gaps
to the result of correntropy. The results of experiment 3 dis-
play similar characteristics, and all the similarities have lower
accuracies than those of experiment 2.

In the experiments that are conducted above, we observe that
correntropy outperforms the kernels and cosine in face recog-
nition, no matter how complex the imaging conditions or the
testing environments are. Just for this reason, the correntropy
will be used in the following sections to evaluate other aspects
of our new algorithm and then compare the performance with
some state-of-the-art methods.

B. Classifiers Comparison

To illustrate the classification performance of the proposed
classifier, some state-of-the-art classifiers, e.g., 1NN, SVM,
SRC, and linear regression classification (LRC), are exploited
to finish the feature matching task by using the same features.
In particular, we also compare our results with those of KSRC
method, which is the special case of γθ = γϕ = 1.

The results on the extended Yale B data are shown in
Fig. 5(a). As we stated before, the lighting condition of

Fig. 5. Results by using different classifiers. (a) Extended Yale B data.
(b) Occlusion-based AR data.

subset 2 is very close to subset 1, thus all the classifiers
can completely classify the images in subset 2. For other
subsets, the recognition rates present very similar character-
istics. Within the compared classifiers, SVM cannot achieve
the high accuracies as others do. Specifically, the results of
both subsets 4 and 5 are below 80%. However, our proposed
classification rule can automatically choose the most corre-
lated instances in its sparse representation procedure, thus it
outperforms others in all the experiments.

Fig. 5(b) presents the results on the two special experiments,
in which the occluded images, i.e., by sunglasses and scarves,
are used for testing, but all the remainders are used for train-
ing. For the sunglasses occluded images, we can see the least
angle-based criterion has a large improvement in classification
accuracy, thus it obviously outperforms all the other classifiers.
For the scarves occluded images, although the recognition
rates are not significantly different, our new classifier cor-
rectly classify 94.46% testing instances thus still outperforms
others.

In comparisons between our method and KSRC, we notice
that the superiority of weighting optimization is more evi-
dently presented by the learning procedure with complex data.
For the data sets of controlled lighting conditions, the final
classification accuracies of the two methods are almost the
same. Therefore, only the results on the AR set and LFW
data are presented as follows.

For the AR data, we use the frontal images without expres-
sion and lighting variations in session 1 to learn the discrimi-
nant subspace, and then use the occluded images in session 2
for testing. The results are presented in Table II. In the experi-
ments with scarf-occlusions, when KSRC is used, the result of
cosine function, RBF, and correntropy is 60.00%, 92.33%, and
94.64%, respectively. However, when our weighting procedure
is applied to classification, the result is 86.67%, 93.67%, and
93.67%, respectively. In the KSRC-based experiments of sun-
glass occlusions, the result of cosine, RBF, and correntropy
is 72.33%, 92.33%, and 95.62%, respectively. However, the
result is increased to 95.00%, 93.67%, and 97.00% by our
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TABLE III
RESULTS(%) OF EXTENDED YALE B DATA USING RANDOM SAMPLING, WHERE n0 IS THE NUMBER OF TRAINING SAMPLES OF EACH SUBJECT

TABLE IV
RESULTS(%) OF EXTENDED YALE B DATA USING DIFFERENT SUBSETS

weighting approach. Therefore, the superiority of weighting is
experimentally validated by the AR data.

For the LFW data, we use the standard test protocol to com-
pare the results between different similarity functions. The
reported results shown in Table II are the average accura-
cies and their variations in tenfold cross-validation. When the
KSRC is used to obtain the discriminant subspace and classi-
fication, the result of the three similarities is 50.67%, 83.70%,
and 82.50%, respectively. Nevertheless, when our weighting
approach is used to simultaneously optimize the discriminant
subspace, we can see the average result is 52.33%, 85.28%,
and 86.78%, respectively.

Therefore, both results that obtained by using the AR and
LFW sets validate the superiority of weighting approach. In
other words, the weighted regularization in computing the
fused similarities indeed plays an important role in feature
normalization and over-dominance alleviation.

C. Computational Time and Feature Dimensions

The computational time of both feature learning and classifi-
cation is shown here. Particularly, the feature learning methods
include linear discriminant analysis (LDA) [12], kernel dis-
criminant analysis (KDA) [41], Gabor [16], logarithmic total
variation (LTV) [40], LBP [17], discriminant face descrip-
tor (DFD) [7], LGOP, and IGO-LDA, while classifiers include
1NN, SVM, SRC, LRC [42], collaborative representation
classification (CRC) [43], RSC, correntropy-based sparse rep-
resentation (CESR), and LARS. The total 570 training images
are randomly chosen from extended Yale B set.

The final features that will be input to the classifiers are
summarized as follows. All the discriminant analysis-based
feature extractors, i.e., LDA, KDA, Gabor, IGO, and LOGO,
preserve nc − 1 features for classification, where nc is the
number of classes. LTV and gradientface generate the same
feature sizes as the original image, namely 2576. LBP divides
the image into 8 × 6 blocks and then extracts the local binary
coding-based histograms, thus it generates 12 288 features to
compute the χ2 kernel values. For DFD and LGOP, we use
the default parameter settings in the local coding stage, and
then reduce the feature dimensions to 400 by the whitened
principal component analysis [20].

The computational time of each training method is shown
in Table V. As a classical dimension reduction method, LDA
takes 0.84 s to compute the discriminant subspace by directly

using the pixel images. When the Gabor filters are used to
generate multiscale features, the training time is increased to
60.16 s. Although gradientface does not need to attain discrim-
inant subspace for dimension reduction, the gradient features
require 9.36 s to prepare for the cosine-based distances. Due to
the time-spending �1-based total variation optimization, LTV
uses more time than 40 min to compute the robust features.
IGO method takes 16.88 s to complete the cosine similarity
calculation and discriminant analysis. The computational time
of LBP, DFD, and LGOP is 119.19, 512.38, and 348.30 s,
respectively. As our LOGO method enhances the LGOP fea-
tures by using the correntropy as the similarity metric and then
using the multiple kernel-based subspace learning procedure,
it needs 455.96 s in training.

To measure the test time of the classifiers, we input the
LOGO features into different classifiers, and then report the
computational time of classifying one test instance. We think
the same input features can provide a fair condition in com-
paring the classification efficiency. The results are shown in
Table VI.

Theoretically, the 1NN classifier takes little time in classifi-
cation because it only need to compute the simple Euclidean
distances without any optimization. The practical computa-
tional time is 2.18e-4 s, which is obviously less than those
of other classifiers. Except for SVM, of which the test time
is 3.23e-2 s, the remainder classifiers can be viewed as the
same category because all of them are regression models of
different regularization terms. The efficiency of SRC, LRC,
and CRC is close to each other, as the time is 11.05e-2,
10.78e-2, and 17.85e-2, respectively. As RSC is motivated by
dealing with the occlusion-based data representation problem,
the extended Yale B data make the optimization of RSC very
simple, and thus it only needs 4.35e-2 s to classify the test
instance. In contrast, CESR adopts half-quadratic optimiza-
tion approach to solve the coefficient vector and the time is
32.10e-2 s. Notice that the correlation-based LARS only takes
6.84e-2 s in test, thus it is more efficient than CRC and CESR.

V. COMPARATIVE RESULTS

In this section, we compare LOGO with some state-of-
the-art methods, which include descriptor-based methods,
e.g., Gabor-LDA, LBP, IGO-LDA, and the regression-based
classifiers such as SRC, LRC, RSC, and CESR.



REN et al.: ENHANCED LOCAL GRADIENT ORDER FEATURES AND DISCRIMINANT ANALYSIS FOR FACE RECOGNITION 2665

TABLE V
TRAINING TIME (SECOND) OF THE COMPARED METHODS. THE TOTAL

570 TRAINING IMAGES OF RESOLUTION 56*46 ARE RANDOMLY

CHOSEN FROM THE EXTENDED YALE B SET

TABLE VI
TESTING TIME (SECOND) OF THE CLASSIFIERS. THE TESTING IMAGE

IS RANDOMLY CHOSEN FROM THE EXTENDED YALE B SET

A. Results for Extended Yale B Data

We make two groups of experiments for different test tasks,
in which the first group is based on random sampling and the
other is based on different lighting subsets.

1) Testing With Random Sampling: First, ten samples from
each subject are randomly selected to constitute the train-
ing set, and the remainders are used for testing. We present
the average recognition rates in Table III. As the pixel-based
data are used for subspace learning, the average accuracy
of LDA is only close to 71%. By the total variation trans-
form and discriminant learning, LTV and LBP obtain their
respective accuracy as 81.06% and 88.07%. The results of
Gabor and DFD are 93.0% and 88.07%, respectively, thus
they further improve the recognition performance. For the
gradient-based feature descriptors, the result of gradientface
is 91.89% which is lower than those of LGOP, IGO, and
LOGO methods. Due to the local order-based feature fusion,
our LOGO correctly classify 99.85% of the testing instances,
thus outperforms other methods.

When the training size for each subject is increased to ten,
all the methods enhance their discrimination capacities which
are reflected by their recognition accuracies. The detailed
results are also shown in Table III. Although the results of
LGOP and IGO achieve to 98.73% and 99.76%, respectively,
our LOGO method can correctly classify almost all the
samples as its accuracy is stably close to 100%.

2) Testing With Preassigned Subsets: In another experi-
ment setting, the extended Yale B data are divided into five
nonoverlapping subsets according to the original data con-
stitution. Then subset 1 is used for training, and other sets
are used for subsequent testing. We present the test results in
Table IV. The illumination condition becomes more extreme
as the indexes of subset increase, all these methods except
for gradientface and IGO-LDA obtain 100% accuracies for
subset 2. However, when subset 3 is used for testing, only our
LOGO keep the 100% accuracy, which is closely followed
by the LTV, LBP, and IGO methods. For subset 4, LOGO
obtains a result close to 95.06%, which is followed by the
accuracy 80.42% of LBP. All the remainder methods can only
obtain lower recognition rates than 80%. When subset 5 is used
for testing, the results of LDA and Gabor-LDA methods only

achieve 6.72% and 6.58%, which indicate that both the pixel
features and Gabor filters cannot provide robust features for
the extremely distributed lighting variations. The phrase angle-
based methods, i.e., gradientface and IGO-LDA, improve the
recognition accuracies by different ranges, but their results are
still inferior to that of LBP, which correctly recognizes 76.2%
samples in the test set. Notice that the result of LOGO is
96.64%, thus it significantly outperforms others even though
with these extreme illuminations.

B. Results for FRGC Data

The outdoor lighting subset of FRGC data is exploited
here for evaluating the recognition performance. The uncon-
trolled images were taken in varying illumination conditions,
e.g., hallways, atriums, or outside. We conduct two groups of
experiments for different evaluation purposes.

In the first group, five controlled lighting images of each
person compose the whole data, and three of which are ran-
domly chosen for training and the remainders for testing. This
is a relative easy recognition task due to its controlled light-
ing conditions, and the results have been shown in Table VII.
Except for Gabor and LTV, each of the other methods can
obtain a recognition rate higher than 95%. The best perfor-
mance is obtained by LGOP, which correctly classify all the
testing samples. Notice that the results of DFD and LOGO are
99.78% and 99.56%, respectively, thus they are very close to
that of LGOP. The result of LTV is only 89.78%, it indicates
that the total variation operator cannot capture the discriminant
and structured information within the neighborhood regions.
On the contrary, the gradient-based descriptors, such as ori-
entations and local order codes, provide very important and
structured patterns in feature representation.

In the second group of experiments, three of five uncon-
trolled lighting images of each person are randomly chosen for
training and the remainders for testing. Due to the more com-
plex lighting image mechanism in the outdoor environment,
it presents a relatively difficult feature extraction and match-
ing task. As shown in Table VII, the top three results are
obtained by the LGOP, IGO, and LOGO methods, of which the
recognition rate is 94.05%, 96.36%, and 97.66%, respectively.
Several conclusions can be summarized from the results. First,
due to the more complex lighting variations than that of
the controlled data, all the methods decrease their recogni-
tion rates by different degrees. Second, except for IGO and
LOGO, other methods are sensitive to the uncontrolled light-
ing condition. Moreover, we find the subspace learning-based
methods, i.e., IGO and LOGO, outperform the gradientface
model. It indicates that the supervised subspace is indeed
important for discriminant and compact feature representation.

C. Results for AR Data

We make three groups of experiments as follows.
1) Testing With Random Sampling: The first group of

experiments is based on random sampling, and the objec-
tive focuses on training with mixed instances, which may be
captured in different periods and with continuous occlusions.
The recognition task incorporating occluded samples within
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TABLE VII
RESULTS(%) OF FRGC DATA USING RANDOM SAMPLING

TABLE VIII
RESULTS(%) OF AR DATA USING RANDOM SAMPLING, WHERE n0 IS THE NUMBER OF TRAINING SAMPLES OF EACH SUBJECT

TABLE IX
RESULTS(%) OF AR DATA USING OCCLUDED FACES IN DIFFERENT SESSIONS

Fig. 6. Demo of sunglasses and scarves occlusions.

training set has a mixed blessing. On one hand, the occluded
samples will lead to a large variation and make biased statis-
tical computation, then increase the difficulty of classification.
On the other hand, occlusion can be viewed as a typical noise,
as shown in [44], so introducing noisy samples into training
set is equivalent to make a Tikhonov regularization on the
learning system, thus the generalization ability of the obtained
subspace can be enhanced for out-of-sample problem.

The results using 10 and 14 samples/class for training are
shown in Table VIII. The result of LTV in the two exper-
iments is 52.77% and 62.21%, respectively, thus they are
obviously lower than those of other methods. However, due
to the stronger distinguish-ability of Gabor and gradient fil-
ters, the Gabor and gradient-based descriptors obtain better
results than those of LTV, LDA, and LBP. When 14 samples
are randomly chosen from each subject for training, for exam-
ple, the recognition rate of Gabor-based method is 92.81%,
while the result of LGOP, IGO, and LOGO is 96.16%, 93.95%,
and 96.22%, respectively. With concern of the gradientface
method, which corresponds to the accuracy of 89.17%, we
can see the local order coding plays an important role in clas-
sifying the samples, and therefore LGOP and LOGO obtain
the top results.

2) Test by Continuously Occluded Images: In the second
group of experiments, we focus on the performance in pres-
ence of contiguous occlusion, which is inarguably one of the
most challenging paradigm in robust face recognition. The
AR database consists of two modes of contiguous occlusion,
i.e., sunglasses and scarves. Fig. 6 reflects these two scenarios
for two sessions, and the second and the fifth images are with
lighting variations.

As in [3], [29], and [31], a subset (with only illumination
and expression changes) that contains 50 male and 50 female

subjects was chosen from the original AR database in this
experiment. For each subject, the seven images from session 1
were used for training, with other seven images from session 2
for testing. The detailed recognition accuracies are listed
in Table IX. Due to this special configuration, the data in train-
ing set and testing set can be viewed as heterogeneous, thus
the recognition task is different and the feature representation
should be more carefully designed.

For the experiments that tested by sunglasses occlusions.
The pure pixel-based subspace learning and feature match-
ing methods are not reasonably effective, thus LDA can only
classify 13.6% of the testing samples. Although Gabor and
LBP transformations integrate local contrasts in the struc-
tured coding stage, the result is only 22.69% and 91.74%,
respectively. By incorporating the gradient orientation fea-
tures, LGOP and gradientface obtain their recognition rates
of 83.19% and 86.27%, respectively. Further improvements
are displayed by the sparse regression-based classifiers with
robust similarity metrics. The result of SRC, RSC, and CESR
is 87.0%, 60.5%, and 74.86%, respectively. As we can see, the
best result is obtained by 92.44% of our LOGO method, which
is closely followed by LBP. By comparing with other results as
shown in Table IX, e.g., CESR, IGO, and LGOP, we attribute
the remarkable performance to the ensemble of structured local
order patterns and robust correntropy for discriminant metric
learning.

For the scarves occluded images, the result of SRC and
RSC is 59.5% and 57.0%, respectively, which are lower than
89.92% of CESR. It indicates the importance of maximum
correntropy metric in sparse representation-based classifica-
tion rules. By learning of the locality importance, DFD slightly
promotes the result of LBP from 78.99% to 80.81%. By using
the gradient orientation features, the results of gradientface and
IGO are 85.57% and 71.15%, respectively, which are consis-
tently lower than 92.30% of LGOP and 94.46% of LOGO. It
shows that the local order coded descriptors indeed improve
the recognition accuracy of the simple orientation-based fea-
tures. Moreover, even though the supervised learning approach
are respectively applied to IGO and LOGO, the superiority of
local order patterns is still displayed by the LOGO algorithm.
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TABLE X
MEAN ACCURACY (%) ON LFW DATABASE

Fig. 7. Some examples of one person in LFW set.

D. Face Verification Results for LFW Data

LFW database [39] contains 13 233 images of 5749 people
downloaded from the Web, which is designed for totally
unconstrained face recognition with dramatic variations of
pose, illumination, expression, misalignment, occlusion, and
so on. Some images are shown in Fig. 7.

The specified LFW evaluation protocols are used for face
verification. The database is divided into ten disjoint splits,
which contain different identities. In the unrestricted protocol,
the training information is provided as simply the names of the
people in each split, thus one can formulate as many match and
mismatch pairs as one desires, from people within each split.
The testing set is the 600 predefined image pairs in the remain-
ing split, where 300 are positive pairs portraying the same
person and the remaining 300 are negative pairs portraying
different people.

The images are resized to 50 × 50 for reducing the time
cost. Notice that there are more than 10 000 training samples of
more than 5000 people in each experiment, but most of people
have only one or two samples. To obtain more representative
features, the persons who have the more than five images are
chosen to learn the discriminant subspace.

Besides the methods including gradientface, IGO,
LGOP, and DFD, some benchmark and related methods,
e.g., multi-resolution LBP in Markov random
field (MRF-MLBP) [45], LBP multishot [46], locally
adaptive regression kernel (LARK) [47], adaptive prob-
abilistic elastic matching (APEM) [48], distance metric
learning (DML)-eigSIFT [49], information theoretic-based
discriminant metric learning (IDML) [50], and V1-like
multiple kernel learning (MKL) [51] are also exploited
here for a broader comparison. Notice that the IDML
and DML-eigSIFT are metric learning methods. LARK
and V1-like MKL emphasize the kernel-based regression
models. The MRF-MLBP, LBP multishot, and APEM
can be attributed into the LBP or scale-invariant feature
transform (SIFT)-based local descriptor fusion methods. We
present the results (mean±std) of the compared methods in
Table X, which shows that the result of LOGO is 86.78±1.50.
It indicates that the proposed new features not only beat the
traditional gradient-based descriptors, but also outperform
the local feature fusion-based kernel learning models. Fig. 8
displays the receiver operating characteristic curve (ROCs),
and it demonstrates the superiority of our LOGO in the LFW
verification task.

Fig. 8. ROC over view 2 on the LFW database.

It has been recently reported that the best accuracy of the
LFW validation task has exceeded 99%, which was obtained
by deep learning method [23] with large-scale data. It should
be noted that the great improvement of validation accuracy
is reported under a different test protocol [23], which exploits
lots of foreign-aided data with more complex image variations
to assist the training process. Pure comparison of recognition
accuracies but in different test protocols is not suitable, and
thus it is not further discussed in this paper.

VI. CONCLUSION

This paper proposes a enhanced IGO descriptor based on
discriminant subspace learning. The novelty concentrates on
the local order-based feature coding and the correntropy-based
similarity in sparse representation classification. Along this
way, the gradient filters are used to describe local contrasts
within neighboring pixel points, thus the proposed feature
descriptor enhances the local textures and further discovers
intrinsic structure of facial images. Two kinds of similarity
functions, i.e., kernel and correntropy, are used to measure
the closeness of each pair of instances, and then present a
comparative study. Experimental results show that the fea-
ture representation method achieves competitive performance
under complex conditions, including extreme illumination and
occlusion variations. How to improve the domain adaptation
ability of the algorithm is our future work.
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