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Abstract 

 
Active shape model (ASM) statistically represents a 

shape by a set of well-defined landmark points and models 
object variations using principal component analysis 
(PCA). However, the extracted shape contour modeled by 
PCA is still unsmooth when the shape has a large variation 
compared with the mean shape. In this paper, we propose a 
regularized ASM (R-ASM) model for shape alignment. 
During training stage, we present a regularized shape 
subspace on which image smoothness constraint is 
imposed, such that the learned components to model shape 
variations should not only minimize reconstruction error 
but also obey smoothness principle. During searching 
stage, a coarse-to-fine parameter adjustment strategy is 
performed under Bayesian inference. It makes a desired 
shape smoother and more robust to local noise. Lastly, an 
inner shape is introduced to further regularize search 
results. Experiments on face alignment demonstrate the 
efficiency and effectiveness of our proposed approach. 
 

1. Introduction 
Shape analysis is an active area in computer vision. A 
common task of shape analysis is to recover both pose 
parameters and low-dimensional representation of the 
underlying shape from an observed image. Applications of 
shape analysis spread from medical image processing, face 
recognition, object tracking and etc. A lot of approaches 
have been proposed for shape analysis in the past decades. 
Among them, the Active Shape Model (ASM) [1, 2] is the 
most flexible methodology and has been deeply researched. 

In order to learn a robust statistical model and retrieve a 
smooth object contour, many shape models have been 
developed to further improve ASM’s performance. They 
mainly emphasize on two parts: (1) statistic framework to 
estimate the shape and pose parameters and (2) optimal 
features to accurately model appearance around landmarks. 
For parameter estimation, Zhou, Gu, and Zhang [3] propose 
a Bayesian tangent shape model to estimate parameters 
more accurately by Bayesian inference. Coughlan and 
Ferreira [4] introduce a Markov Random Field model to 

model both the local image structure and the shape prior. 
Liang et al. [5, 6] adopt Markov network to find an accurate 
shape which is regularized by the PCA based shape prior 
through a constrained regularization algorithm. Li and Ito 
[7] use AdaBoosted histogram classifiers to model local 
appearances and optimize shape parameters. Thomas Brox 
et al. [8] integrated 3D shape knowledge into a variational 
model for pose estimation and image segmentation. V. 
Blanz et al. [20] uses Bayesian method to estimate 3D 
shape parameter. Huang et al [12] use a nonlinear 
constrained Gaussian process latent variable model to 
represent global shape prior. For optimal features, van 
Ginneken et al. [9] propose a non-linear ASM with Optimal 
Features (OF-ASM), which allows distributions of 
multi-modal intensities. Federico Sukno et al. [10] further 
develop this non-linear appearance model, incorporating a 
reduced set of differential invariant features as local image 
descriptors. A Cascade structure containing multiple ASMs 
is introduced in [11] to make location of landmarks more 
accurate and robust. Recently, Huang et al. [12] propose an 
illumination robust feature to model local information of 
landmark points when illumination changes dramatically. 
However, when these methods are applied to face 
alignment, the searched face contours are still unsmooth 
and couldn’t well represent large deformation. 

A human face contour has large deformations and is a 
smooth object shape. When applying deformable mode to 
face alignment, we find that an unsmooth boundary comes 
not only from local noise but also from ASM model itself. 
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Figure 1: (a) Cheek shape reconstructed by a PCA eigenvector
when the corresponding shape parameter is equal 3 iλ ( iλ  is the
eigenvalue). (b) Cheek shape reconstructed by a RSS eigenvector
when the corresponding shape parameter is equal to 3 iλ . (c)
Cheek shape reconstructed by a PCA eigen vector corresponding
to a small eigenvalue when shape parameter has a large value. 

(a) (b) (c)



 

In ASM and its derivations, the principle component 
analysis (PCA) technique is used to model face shape 
deformation or to build a Gaussian shape prior.  A new 
shape is expressed as a linear combination of the principal 
components learned from PCA. Here, we call these 
principal components as basis shapes. Because there is no a 
smooth constrain on these basis shapes, we couldn’t ensure 
that a new shape expressed by these basis shapes is smooth. 
Fig.1 (a) shows an example shape constructed by one basis 
shape. It is obvious that this shape is unsmooth in some 
parts. Furthermore, shape parameters with large eigen 
value model main variation of a face and those with small 
eigen values describe face’s local details. When the value 
of shape parameter is close to or larger than eigen value, the 
generated new shape would lose their semantic information 
and becomes unpredictable. Fig.1 (c) illustrates one 
example of this scenario. To tackle these problems, we 
would consider applications of smoothness constraints.  

In this paper, we firstly propose a Regularized Shape 
Subspaces (RSS) for regularizing PCA shape subspace. 
The smoothness constrain is imposed on the subspace 
components should not only minimize the construction 
error but also obey the smoothness principle. Fig.1 (b) 
show a shape expressed by single shape basis learned by 
RSS. Secondly, Bayesian risk minimization theory is 
introduced to learn a smooth shape during a new shape 
search. This makes parameter estimation more robust to 
local noise and leads to a coarse-to-fine shape search. This 
parameter estimation method can also be viewed as a shape 
parameter regularization method. But different from 
isotropic noise in the tangent space [3,5,6], our method 
assumes that the noise comes from each landmark’s 
inaccurate searching. Thirdly, we construct an inner shape 
from some landmarks that are easy to be located. The inner 
shape is constructed by eyes and mouth center which can be 
accurately detected by appearance-based method. We use 
the inner shape to estimate ASM’s pose parameter and 
further regularize search results. 

2. Overview of ASM 
This section briefly reviews the ASM segmentation scheme. 
We follow the description and notation of [2]. An object is 
described by points, referred as landmark points. The 
landmark points are (manually) determined in a set of K 
training images. From these collections of landmark points, 
a point distribution model (PDM) [13] is constructed as 
follows. The landmark points (x1,…,xn, y1,…,yn) are 
stacked in shape vectors. 

1 1( ,.., , ,.., )T
k n nD x x y y=  (1) 

where T denotes the transpose, PCA is applied to the shape 
vectors Dk by computing the mean shape and covariance 
matrix: 
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The eigenvectors of S corresponding to the N largest eigen 
values nλ  are retained in a matrix F={F1,.., FN}. A shape 
can now be approximated by 

Tx x b F≈ +  (4) 
Where b is a vector of N elements containing the shape 
parameters, termed by shape parameter, computed by 

( )Tb F x x= −  (5) 
Before PCA is applied, the shapes can be aligned by 
translating, rotating and scaling so as to minimize the sum 
of squared distances between the landmark points. We can 
express the initial estimate x of a shape as a scaled, rotated 
and translated version of original shape.  

( , )[ ]x M s x tθ= +  (6) 
Where ( , )M s θ  and t are pose parameters (See [1] for 
details). Procrustes analysis [14] and EM algorithm [3] are 
used to estimate pose parameters and align the shapes.  

3. Regularized Shape Subspaces 
Let D={D1,D2,…,Dk} be a training set of K shape 

examples, where an shape sample Dk is a shape vector. An 
ASM method learns from the training data D and ordered 
set of N basis shapes F={F1,.., FN}, where Fn is a vector of 
the same size as Dk. 

The learning of basis shapes F may be done by 
minimizing a cost function E(D|F) 

* arg min ( | )
F

F E D F=  (7) 

Where E(D|F) is associated with some likelihood 
distribution P(D|F). The cost function for standard PCA is 
the squared reconstruction error, subject to orthonormal 
constrains imposed on F(n) 
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Note that Fn(x,y) should be smooth shapes in the image 
plane. When Fn strive their best to minimize E(D|F), they 
may overfit to the training examples D, especially when the 
training set is small, and the subspace model thus learned 
may not give good generalization to unseen shapes. 

RSS learning attempts to reduce overfitting by imposing 
a priori constraint of smoothness. The smoothness 
constraint is imposed on the basis functions Fn (x,y) so that 
Fn (x,y) are smooth functions of (x,y). Let us consider the 
membrane type of regularizer composed of the first-order 
derivative terms. The smoothness term is defined as: 

( ) ( )n n
n

E F w E F=∑  (9) 

Where wn are importance weights and  
2 2
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Where x
nF and y

nF  are the first partial derivatives of the 
bases functions. 
 In the case of shapes, (x,y) take values on a discrete grid 
and the point (x,y) is given an order number i. Then the first 
derivatives may be approximated using the first order 
differences: Fn

x(x,y)= Fnx(i) - Fnx(i-1)  and Fn
y(x,y) = Fny(i) - 

Fny(i-1). Fnx(i) and Fny(i) are the ith point’s coordinates of x 
and y respectively. Then, the membrane type of regularizer 
for Fn is expressed in discrete form as: 

2 2( ) [( ( ) ( 1)) ( ( ) ( 1)) ]n nx nx ny ny
i

E F F i F i F i F i= − − + − −∑  (11) 

Assuming 1 2 Nw w w w= = = = , we can rewrite Equ. (11) 
in the following matrix representation: 

( ) ( )TE F w trace F VF= ∗  (12) 
The definition of matrix V is left to the appendix A. Unless 
otherwise stated, we would focus on the case when wn are 
equal to w for practical implementation, which would help 
to reduce the number of parameters for tuning.  

Then we define the cost function for RSS as a 
combination of Equ.(8) and Equ.(9) as follows 
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Fig.1 (b) shows a shape reconstructed by RSS. It is easy to 
find that the border of RSS reconstructed shape is smoother 
than that of PCA reconstructed shape. 

In RSS, the smoothness constraint of E(F) is combined 
with the constraint of E(D|F) due to data D, giving rise to 
balanced cost E(F|D). Minimizing E(F|D) leads to a result 
of balance between the original cost and the smoothness. 
Such F will be smoother functions of the spatial 
coordinates (x,y) than obtained by minimizing E(D|F) only. 
In addition, the smoothness constraint used in E(F) can be 
altered to Laplacian penalty function which is of second 
order derivative. The parameter w is an important factor to 
tune the balance of E(D|F) and E(F). RSS method makes 
energy more condense to the first several eigen values. 
Given a large value of w, RSS will reduce the number of 
eigenvectors which contain semantic variation of shapes. 
Hence, we suggest that value of w should be smaller than 
the smallest eigen value corresponding to eigen vectors. 

4. Bayesian Estimation 
Considering that basis shapes corresponding to larger eigen 
values model shape’s large variation and those 
corresponding to smaller ones model shape’s local details, 
we use Bayesian estimation to lead a coarse-to-fine shape 
parameter adjustment strategy during searching a shape. 

In Bayesian estimation, a risk is minimized to obtain the 
optimal estimate. The Bayesian risk of estimate f* is 
defined as 

* *( ) ( , ) ( | )R f C f f P f d df= ∫  (14) 

where d is the observation, C(f*,f) is a cost function and 
P(f|d) is the posterior distribution. Minimizing Equ.(14) is 

equivalent to maximizing the posterior probability (see [18] 
for details) 

* arg max ( | )f P f d=  (15) 
In ASM, a shape f is expressed by the shape parameter b. 
Then we want to learn an optimal parameter b*. 

* arg max ( | )
b B

b P b d
∈

=  (16) 

Assuming that the observation b is the true shape contour 
plus an isotropic Gaussian noise ε , we can rewrite the 
ASM model as 

Td x b F ε= + +  (17) 
Td x b F ε− − =  (18) 

where shape parameter b is an n-dimensional vector 
distributed as multivariate Gaussian (0, )N Λ  and 

1( ,..., )Ndiag λ λΛ = , and F is matrix containing the 
eigenvectors learned by PCA or RSS. The ε is a 
n-dimensional random vector which is independent with b 
and distributes as  

2 2( ) ~ exp{ || || / 2( ) }p ε ε ρ−  (19) 
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where dold is the shape estimated in the last iteration and d is 
an observed shape in the current iteration. ai is 
classification confidence related to a classifier used in 
locating a landmark. ai equals to 0 implies that classifier 
can perfectly predict shape’s boundary; while ai equals to 1 
means classifier fails to predict the boundary. 

Combing Equ.(18) and Equ.(19), we obtain the 
likelihood of model parameters: 
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Let (ln ( | )) 0P b y
b

∂ =
∂

, we get: 

* ( /( )) ( )T
j j j jb F d xλ λ ρ= + −  (22) 

where jλ  is the jth eigen value learned by PCA or RSS. 

Because ASM’s shape parameter ( )T
j jb F d x= − , it 

follows: 
* ( /( ))j j j jb bλ λ ρ= +  (23) 

It is clear that Equ.(23) is also a constrained 
regularization method to optimize the shape parameter b. In 
[3], ρ  is set to a fixed value and represents the residual 

variance. And in [6], the constrained regularization is 
tuned by the position’s probability. When using 
regularization method, we will find that two problems: 1) 
bj

* is always smaller than bj because ρ  is larger than zero. 
2) The relationship between ρ  and eigen value is unknown. 
The parameter bj corresponding to a smaller eigen value 
will receive a large punishment if ρ  has a large value.  

Hence, we introduce a compensating factor p1 and a 
smoothing factor p2 to lead a coarse-to-fine shape 



 

parameter adjustment. 
1 2( /( ))j j j jb p p bλ λ ρ= +  (24) 

where 1 max 2 max1 ( ) /p pλ ρ λ≤ ≤ + , 2 1p ≥ . The compensating 
factor p1 is introduced to make shape variation along 
eigenvectors corresponding to large eigen values more 
aggressive. Moreover, because we expect a smooth shape 
contour and neglect details in the first several iterations, the 
smoothing factor p2 is introduced to further punish shape 
parameter bj. It should be noticed that ρ  will become 
smaller and all punishment will disappear. As in Fig.2, the 
reconstructed shape’s contour by Bayesian inference is 
smoother than the one by PCA in regions pointed by the 
black arrows. Although the PCA reconstruction can remove 
some noise, the reconstructed shape is still unstable when 
the image is noisy. Equ.(24) makes the parameter 
estimation more robust to local noise. We suggest that p1 is 
set to max 2 max( ) /pλ ρ λ+  and p2 are manually tuned 
according to experiments. 

5. Inner Shape Constrain 
Face detection problem has been well defined, and many 

efficient yet simple methods have been proposed to resolve 
this problem [17]. We can easily and accurately detect the 

coordinates of eyes and mouth by appearance-based 
method. How can we use these methods to improve ASM’s 
searching result? Instead of simply giving a good initial 
position, we further introduce the inner shape to the ASM 
as a part of PDM. 

For a face contour, the inner shape is composed of 13 
landmarks derived from three given points: left eye center, 
right eye center and mouth center. We term the three points 
as fixed points. Five landmarks are added equidistantly 
between two eyes center to represent horizontal connected 
line. And five landmarks are inserted equidistantly in the 
vertical line passing the mouth center and perpendicular to 
the horizontal line. Those 13 landmarks are directly 
combined into the PDM in both training and searching.  

During training phase, the coordinates of fixed points are 
calculated by the mean value of the coordinates of 
landmarks around eyes and mouth. All shapes are aligned 
according to two eyes centers and mouth center only. 
During searching phase, the initial coordinates of fixed 
points are automatically calculated by eye detection and 
mouth detection algorithm. At each iteration, the 
coordinates of fixed points are automatically revised by the 
mean value of landmarks around eyes and mouth.  

6. Experiments 
In this section, we test our proposed method on two 
experiments: cheek contour search and facial contour 
search. We randomly select 100 face images from the 
XM2VTS face database. [15] Each face is aligned by the 
fixed points. The average distance between two eyes is 80 
pixels. Three points of the fixed shape are manually 
labeled in training and automatically detected in testing. 
The inner shape takes a shape of letter ‘T’ (see Fig.1). 
Hamarneh’s ASM source code [16] is taken as the 
standard ASM without modification. Optimal features are 

Figure 3: Comparison of different algorithms' cheek searching results: Shapes in first row are results of ASM
searching; Shapes in second row are results of simple OF-ASM; Shapes in third row are results of R-ASM with OF.

Figure 2: Shapes reconstructed from PCA and Bayesian
Inference. Left shape is mean shape after desired movements;
middle shape is reconstructed by PCA; right shape is
reconstructed by Bayesian estimation.  



 

collected from features reported in both paper [9] and [10]. 
The number of optimal features is reduced by sequential 
feature selection [19]. All points near the landmarks are 
classified by a linear regression to predict whether they lie 
in or out of a shape. 

6.1. Experiments on Cheek Contour 
A difficult task to directly search a cheek contour is 

presented to validate our method. A total of 25 cheek 
landmarks are labeled manually on each image. The PCA 
thresholds are set to 99% for every ASMs. The inner shape 
is composed of points between two eyes and mouth. During 
search, the inner shape is fixed to the initial value.  

Looking at Fig.3, the first two rows are the searching 
results of ASM and OF-ASM. It is clear that some of the 
searching results miss desired position because of local 
noise. Several inaccurate landmarks will drag the shape 
from desired position. It is difficult for ASM and OF-ASM 
to locate points around landmarks near ears and jaw. But 
we can also learn about that optimal features can model 
contour appearance more accurately. With the help of 
optimal features, R-ASM can accurately locate the cheek 
contour. Searching results of R-ASM are well trapped in a 
local area. It is clear that R-ASM can improve search 
results and get a smoother border.  

6.2. Experiments on Facial Contour 
A total of 96 landmarks are labeled manually on each face 
image. The PCA thresholds are set to 95% for every 
ASMs. Five landmarks are inserted into two eyes to 
present horizontal connected line. And five landmarks are 
inserted between mouth and horizontal line to present the 
vertical line. For the sake of simplicity, optimal features 
don’t used in this subsection. The results are shown in 
table 1. The F.S.O. means five sense organs. Location 
error, measured in pixel, is average landmarks distance 
between search results and manually labeled landmarks. It 
is clear that results of R-ASM are much more accurate 
than those of ASM especially on cheek contour. 
Table 1. Location errors of canonical ASM and R-ASM 

Face F.S.O Cheek Contour
ASM 7.74 6.45 11.4

Our algorithm 4.63 4.32 5.36
Improvement 40.2% 33.0% 52.9 %

 
Fig.4 shows a set of searching results of ASM and 

R-ASM. In the case, there are wrinkles and shadings on the 
facial contour or other facial sub-parts. As in Tab.1, ASM 
couldn’t locate the cheek contour very well. It is clear that 
R-ASM can recover shapes from local noise. A direct 
reason is that the shape variation is restricted in a local 
area. The Bayesian inference and RSS hold the whole 
shape and smooth the border. 

7. Conclusion 
The purpose of ASM is to learn a smooth object contour 
from a given input image. Different from other ASM 
methods that aim to learn a smooth contour in the searching 
stage, this paper introduces a regularized ASM to impose a 
natural smooth constrain on ASM’s PCA model to learn 
smooth basis shapes. Bayesian estimation is further 
discussed to give a coarse-to-fine shape parameter 
regularization approach. We firstly focus on shape’s large 
variation and then deal with shape’s local details. We also 
introduce an inner shape to give a simple yet robust pose 
parameter estimation. Comparison results show the 
effectiveness and efficiency of the proposed method. Our 
method can easily be extended to other ASM methods. 
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Appendix 

A. Matrix Representation of E(F) 
Define vic =(vx(1),…, vx(M),vy(1),…,vy(M)) be a column 

vector where { , }c x y∈ and ( ') {0,1}cv i ∈  is an indicator 
function with vc(i’)=1 when i'=i or vc(i’)=0 otherwise. 
Now ( ) T

nx n ixF i F v= , where T is the transpose, and 
( ) ( 1) ( )T

nx nx n ix ixF i F i F v v− − = −  (25) 
With these E(Fn) of Equ.(11) can be rewritten as follows: 
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Hence 
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and 
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=
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However, we notice that there are no data when i=1, 
something should be modified to tackle this issue. In this 
context, we use natural boundary conditions and set 

nx nxF (1) = F (2) and ny nyF (1)=F (2) . Therefore, under the natural 
boundary conditions, we have 
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and V defined in Equ.(21) should be accurately written as  
( 1) ( 1)

2 1 2 1
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where δ is a binary function that δ  is 1 if the input is true 
otherwise it is 0. Then we can get Equ. (12). 
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