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Abstract— The detection of moving objects in videos is
very important in many video processing applications, and
background modeling is often an indispensable process to achieve
this goal. Most of the traditional background modeling methods
utilize color or texture information. However, color information
is sensitive to illumination variations and texture information
cannot be utilized to separate smooth foreground from smooth
background in most cases. Achieving good performance in terms
of high foreground detection accuracy and low computational cost
is also challenging. In this paper, we propose a new integration
framework of texture and color information for background
modeling, in which the foreground decision equation includes
three parts (one part for color information, one part for texture
information, and the left part for the integration of color and
texture information). This framework is able to combine the
advantages of texture and color features while inhibiting their
disadvantages as well. Moreover, we propose a block-based
method to accelerate the background modeling. In particular,
in the texture information modeling process, a single histogram
model is established for each block whose bins indicate the
occurrence probabilities of different patterns, which is different
from the traditional multihistogram model for block-based
background modeling, and then dominant background patterns
are selected to calculate the background likelihood of new coming
blocks. Dynamic background and multimodal problems can be
handled through this technique. To evaluate the foreground
detection performance reasonably, a new quality measure
is proposed. Extensive experiments on various challenging
videos validate the effectiveness of the proposed method over
state-of-the-art methods.

Index Terms— Block based, integrated information, moving
object, object detection, single histogram model.
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I. INTRODUCTION

MOVING object detection plays an important role
in many video processing applications, such as

object tracking, categorization, reidentification, and video
condensation. It often serves as preprocessing for higher level
video analyses and its performance directly affects the perfor-
mance of the subsequent applications. For object tracking, if
a moving object is detected as two or two moving objects are
detected as one, the tracking result may be incorrect. For object
categorization, incomplete or adhesive detection of moving
objects may lead to wrong categorization, and it is the same
case for object reidentification. For video condensation, object
tracking is also an indispensable part. It is not the desired result
if the head and legs of one person appear at different time in
the condensed video. Ideally, a detection method should detect
each moving object separately without breaking.

Background modeling is indispensable for moving object
detection in many cases and many works have been done
in this research area. In early works, the background model
was constructed for each pixel independently. In [1], a single
Gaussian model was used to model the value variations of each
pixel, and the parameters of the Gaussian model were updated
recursively with an adaptive filter. It is robust in modeling
the static background, but is sensitive to dynamic background
variations. To address these problems, the mixture of Gaussian
models (MoGs) was proposed in [2]. In addition, a series of
variants [3], [4] were proposed to improve the performance
of background modeling. However, the Gaussian model-based
methods are all based on the assumption that the pixel intensity
follows a Gaussian distribution, which is not always correct.
In contrast, a nonparametric method was proposed in [5],
where each pixel is directly modeled with a probability density
function without any assumption on the distribution of the
pixel values. Since all the possible pixel values are modeled
into the probability density function, dynamic background
modeling problem can be handled and illumination changes
can be adapted progressively. In [6], a Bayesian decision rule
for background and foreground classification was constructed
based on different feature selections for static and moving
backgrounds, and is able to deal with dynamic background
problems better than MoG. In [7] and [8], background pixel
values are quantized into a set of codebooks to form the
background model which is efficient in memory and speed.

Pixel intensity-based modeling techniques cannot handle
the illumination variation problem at feature level since pixel
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Fig. 1. Left: busy human stream with ruleless lighting condition changes,
so color information may not work well. Right: foreground and background
are both smooth, so there may not be evident differences between foreground
and background in texture information.

intensity itself is sensitive to the change of lighting conditions.
The robustness of the texture feature to illumination variations
makes it possible to handle the lighting changing problem.
In [9], a set of powerful filter operators was integrated with a
linear prediction model to detect foregrounds, where the filter
operators are automatically selected. Dynamic background
modeling with illumination variations can be solved. In [10],
an local binary pattern (LBP) histogram-based method was
proposed to handle the illumination changing problem because
of the stability of the LBP feature in terms of illumination vari-
ations, but the moving cast shadow problem was not well han-
dled yet. Mutihistogram techniques have also been used to deal
with multimodal problems. To address the moving cast shadow
problem, a new scale-invariant local ternary pattern (SILTP)
feature was proposed in [11]. A pattern kernel density
estimation technique was also introduced, and multimodal and
multiscale background modeling were adopted to deal with
complex dynamic scenes.

There also exist methods that fuse color and texture infor-
mation to get robust background modeling in [12]–[14].
However, their fusion way is just assigning different weight
values for color and texture information, which may not be so
effective in some cases.

Until now, only a few works have been done on block-based
background modeling or background subtraction. The advan-
tage of the block-based strategy over the pixel-based one is that
stable foreground detection results can be achieved with less
computation and memory resource, while the disadvantage is
that the detection boundary will be very coarse, and adjacent
moving objects may be connected. Early works of block-based
background modeling include [15] and [16]. In [15], the nor-
malized vector distance measure was used for block correlation
computing. In [16], an edge histogram was calculated for
each block. Later, a multi LBP histogram-based blockwise
background model was proposed in [17] to achieve robustness
to illumination changes and high processing speed, but the
detection boundary is coarse and adjacent moving objects tend
to be connected.

Color information is sensitive to illumination variations,
while texture information cannot be utilized to separate smooth
foreground from smooth background in most cases (Fig. 1).
In this paper, we propose a new integration framework of color
and texture information, which can inherit their advantages
while inhibiting their disadvantages. Since background
modeling is usually a pretreatment for higher level video
analyses, it should be computationally efficient. Therefore,
we use the block-based strategy and construct one model for
each block, which is different from the pixel-based strategy

that has one model for each pixel. A lot of computational
resources can be saved. Traditional block-based methods
construct a model of several histograms for each block to
deal with dynamic background and multimodal problems
and make foreground detection decision for new frames by
histogram matching, which are also time consuming. Instead,
we construct the background model of just one histogram with
its bins indicating the probabilities of their corresponding
patterns in the block. Since all the frequently appearing
patterns can be dominant in the model histogram, we are able
to deal with dynamic background and multimodal problems.
As aforementioned, the block-based method has a shortcoming
that the detection boundary will be coarse and may connect
adjacent moving objects. To deal with this problem, we use
two levels of block sizes. Background models are constructed
in big blocks for stability, while detection decisions are made
for small blocks to achieve finer boundary. Traditional pixel-
based quality measurement is not suitable for evaluation of
foreground detection results because the cases of close moving
objects connecting together, or one moving object breaking
into several parts, cannot be reflected directly. Therefore,
we propose a new region-based quality measurement to
directly show the effectiveness of moving object detection.

The main contributions of our paper are as follows. First,
a new integration framework of texture and color information
is proposed and both illumination variations and smooth
background–foreground problem can be handled. Second, the
block-based strategy is used and a single histogram model is
established for each block, which makes our modeling process
fast with little memory consuming. Dynamic background and
multimodal problem can also be handled via our dominant
background pattern selection process. Third, two levels
of block sizes are used to benefit from the fact that the
background model in big blocks can be more stable, while the
final foreground detection boundary based on small blocks
can be more accurate. Finally, a new quality measure is
designed according to the rule that different moving objects
should be detected separately without breaking.

The rest of this paper is organized as follows. Section II
describes the SILTP information-based background model.
Section III describes the color information-based background
model. In Section IV, we give the integration way of
SILTP information and color information for our foreground
detection judgement. A new quality measure is designed
to evaluate moving object detection results in Section V.
Comprehensive experiments and analyses are demonstrated in
Section VI. Finally, the conclusion is drawn in Section VII.

II. BLOCKWISE BACKGROUND MODEL

BASED ON SILTP INFORMATION

A. Scale Invariant Local Ternary Pattern

Liao et al. [11] proposed the SILTP feature representation
for background modeling, which is more robust to illumination
changes. The SILTP can be encoded as

SILTPτ
N,R (xc, yc) =

N−1⊕

k=0

sτ (Ic, Ik) (1)
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Fig. 2. SILTP operator.

Fig. 3. There are 16 small blocks, and we show four red big blocks here,
which are partially overlapping. It can be seen that each small block may
belong to several big blocks.

where Ic is the gray intensity value of the center pixel,
Ik represents the gray intensity values of the N neighborhood
pixels equally spaced on a circle of radius R,

⊕
denotes the

concatenation operator of binary strings, τ is a scale factor
indicating the comparing range, and sτ is a piecewise function
defined as

sτ (Ic, Ik) =

⎧
⎪⎨

⎪⎩

01, if Ik > (1 + τ )Ic

10, if Ik < (1 − τ )Ic

00, otherwise.

(2)

Fig. 2 shows an example of the SILTP operator.

B. Block-Based Method

Our block-based strategy is motivated by [17], who divided
each video frame into equally sized blocks using a partially
overlapping grid structure and constructed a multihistogram
model for each block. Their foreground detection decision
was also made for each block, which will result in coarse
foreground detection boundaries and may connect adjacent
moving objects because of the large bock size. Realizing that
the size of the overlapped area is smaller than the initial block
size, we develop a two-level block size strategy to fix this
problem.

In our strategy, each image is divided into small blocks:
four small blocks, form a big block, while the big blocks
are partially overlapping, as shown in Fig. 3. A background
model is calculated for each big block but the final foreground
detection decision is made for each small block. The strategy
has several advantages: the SILTP histogram model extracted
from a big block can be more stable than that from a small
one (since the small block is less tolerable to background
movements and is more sensitive to noises). The partially
overlapping technique is able to obtain more information than
the nonoverlapping one. In addition, the final judgement of
each small block depending on the information of all the big
blocks, which it belongs to is more believable. Moreover, the
detection result based on small blocks can be more refined.

A histogram of the SILTP feature is calculated for each
big block. As described above, since each neighborhood pixel
can be encoded as one of the three possible patterns, there
are totally 3N possible patterns and we can further map the
SILTP strings to [1, 3N ]. Suppose the size of the big block
is Sb × Sb , and the mapped number of the SILTP code of

pixel i is Mi . For each pixel i , we calculate the SILTP
histogram of the big block Hs as

Hs(Mi ) = Hs(Mi ) + 1

Sb · Sb
(3)

where Hs(Mi ) is the Mi th bin of histogram Hs , and there are
totally 3N bins. Then, the SILTP histogram of each big block
is obtained.

C. Background Modeling

Heikkila and Pietikainen [10] and Heikkilä et al. [17]
construct a model of several histograms to represent the
appearance of one block in the video sequence and get
the foreground detection decision by matching the new
block histogram with the existing background histograms.
However, there may be too many possible histogram types
due to dynamic background and multimodal conditions.
Consequently, a limited number of histograms is not enough
to represent the background well and useful information may
be lost. Realizing this difficulty, we do not try to focus on the
typical histograms; instead, we focus on the patterns appearing
in the block area. Therefore, we construct the background
model of each block with only one histogram whose bins
indicating the appearing probabilities of its corresponding
patterns in this block. Since moving objects usually appear
for a short time in a video sequence compared with the
background, those patterns which occur more frequently are
more likely to be background patterns. Moreover, the more
background patterns a block contains, the more likely it is a
background block. Sometimes, foreground patterns may be
included in the background patterns only with different distri-
butions or different colors, and our assumption will be invalid
in this case. Fortunately, this case does not often happen.

A background model will be calculated for each big block.
Given a grayscale video sequence, let SILTP histograms of one
big block over time 1, 2, . . . , t be H 1

s , H 2
s , . . . , H t

s . Suppose
Bs is the background model histogram of the big block based
on SILTP information, and the models over time 1, 2, . . . , t
are B1

s , B2
s , . . . , Bt

s . Let B0
s be the initial value of Bs , in which

B0
s (1) = B0

s (2) = · · · = B0
s (Nb) = 1/Nb (Nb = 3N is the

number of the bins of the histogram). Then, Bt
s is updated as

Bt
s(i) = (1 − α)Bt−1

s (i) + αH t
s (i) (4)

where Bt
s(i) is the i th bin of the background model histogram

at time t and α is the learning rate.

D. Moving Object Detection With SILTP Background Model

After background modeling, each big block will have a
histogram as its background model. We further evaluate its
probability of belonging to the background according to

Pb
b =

Nb∑

i=1

Hs(i)T

(
Bs(i),

η

Nb

)
(5)

where

T
(

Bs(i),
η

Nb

)
=

{
1, if Bs(i) ≥ η

Nb

0, if Bs(i) < η
Nb

.
(6)
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Pb
b is the background likelihood of the big block with a

value between 0 and 1, and η is a variable controlling the
value of the threshold η/Nb . Through this, we can get the
background likelihood of all the big blocks of the image.
Equation (6) shows that we consider those bins with the occur-
rence probability larger than η/Nb as dominant background
patterns. Equation (5) shows that we get the summation of the
occurrence probabilities of the selected dominant background
bins as our final probability of the new coming big block
belonging to the background. Since the initial value of each
bin of the background model histogram is 1/Nb , the value
of the bins with their corresponding patterns appearing more
times will be larger than 1/Nb , and the value of the bins with
their corresponding patterns appearing fewer times or even do
not appear will be smaller than 1/Nb . Intuitively said, η = 1 is
a proper value choice, and we have tried different values of η,
finding that η = 1 is indeed a proper value choice. In fact,
the occurrence probabilities of most of the foreground patterns
and unusual background patterns are smaller than 1/Nb , so we
use those patterns whose occurrence probabilities larger than
1/Nb to calculate the background probability of each block.
Our single histogram model is able to handle the multimodal
background-modeling problem, because all the patterns that
appear frequently will be dominant in the model histogram.

The next step is to make the decision whether each
small block belongs to the background or foreground. The
probability of a small block belonging to the background can
be obtained by averaging the background likelihood of all the
big blocks it belongs to and the equation can be written as

Ps
b =

(
n∑

i=1
Pb(i)

b

)

n
(7)

where Ps
b is the background likelihood of the small block,

n is the number of the big blocks which the small block
belongs to and Pb(i)

b is the background likelihood of the
i th one. If Ps

b > Ts , we decide that this small block belongs
to the background; otherwise, we judge that this small block
belongs to the foreground. Here, Ts is the threshold for
judging background and foreground.

III. BLOCKWISE BACKGROUND MODEL BASED

ON COLOR INFORMATION

The SILTP feature has a shortcoming in dealing with smooth
surface. Some common types of backgrounds (e.g., roads) may
be smooth, and there will also be smooth foreground types
like the body of cars or pedestrians with single-color clothes.
Since SILTP features of smooth backgrounds and foregrounds
are nearly the same, it is hard to detect smooth foregrounds
from smooth backgrounds. In this case, color information is a
good supplement. In addition, color information can also be
useful in other cases where SILTP does not perform well, such
as the case that most of the patterns of foreground parts belong
to dominant background patterns but only have a different
distribution. To make use of color information, we update a
temporary background image and compare it with the new
coming frame to judge which parts of the new coming frame
are more likely to be background.

A. Temporary Background Image Updating

Once a new video frame comes, the temporary background
image is updated according to the following equation:

T t
b =

{
0, if t = 0

(1 − β)T t−1
b + βTN , if t > 0

(8)

where

β =
⎧
⎨

⎩

1

W e
ln(W) t−W

W−1
, if 1 ≤ t < W

1
W , if t ≥ W.

(9)

T t
b is the t th temporary background image, t is the current

frame index, TN is the new coming frame, β is the updating
rate, and W is the updating time window size.

B. Color Information Difference Calculation

When a new video frame comes, a color difference between
each of its small blocks and the corresponding small block
in the temporary background image is calculated. We first
average the differences of each color channel of all the pixels
in each small block, and then combine the differences of
the three channels to get the final difference measure. The
reason why we get the color difference of each small block
instead of the big block is that calculation for overlapped big
blocks is more time consuming and global color difference is
already stable enough for each small block. Supposing there
are Ns pixels in each small block, the difference measure of
each small block is calculated with

Dr =
Ns∑

i=1

(
Cr

b(i) − Cr
n(i)

)
(10)

Dg =
Ns∑

i=1

(
Cg

b (i) − Cg
n (i)

)
(11)

Db =
Ns∑

i=1

(
Cb

b (i) − Cb
n (i)

)
(12)

D =
((

Dr

Ns

)2

+
(

Dg

Ns

)2

+
(

Db

Ns

)2) 1

255 · 255 · 3
(13)

where Dr is the summation of the r color channel difference
between the small blocks of the new coming frame and the
temporary background image. Cr

b(i) is the r color channel
pixel value of the i th pixel in the small block of the temporary
background image, and Cr

n(i) is the r color channel pixel value
of the i th pixel in the small block of the new coming video
frame. D is the final color information difference of the small
block pair of the new coming video frame and the tempo-
rary background image. It can be seen from (10) that when
computing the r color channel difference, we can first get the
summation of the r channel pixel values of all the pixels in
the small block, and then get the r color channel difference
by subtracting the two summations of the new coming video
frame and the temporary background image. This means we
only extract the global color change of the small block, and
moving background problems like tree waving can be better
handled through this strategy. The final color information
difference measure D has the value between 0 and 1.
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Fig. 4. Framework of our integrated moving object detection method.

IV. INTEGRATION OF COLOR INFORMATION AND SILTP
INFORMATION FOR MOVING OBJECT DETECTION

Fig. 4 shows the framework of our integrated moving
object detection method. On one hand, we update an SILTP
information-based background model for each big block,
and get the texture information-based background probability
based on the model and the SILTP information of each
big block in the new coming frame. On the other hand,
we update a color information-based temporary background
image, and get the color information difference based on the
temporary background image and the color information of the
new coming frame. Then, we integrate color information and
texture information to get the foreground–background decision
for each small block.

We have already got the background likelihood Ps
b of

each small block of the new coming frame based on SILTP
information and the color information difference D between
the small blocks of the temporary background image and those
of the new coming frame. Therefore, the only thing left is to
make a final decision based on these two values. For SILTP
information, we use the threshold Ts to judge whether the
small block belongs to the background. For color information,
we use the threshold Tc to judge whether the small block
belongs to the background. The final decision can be made
according to

Decision =

⎧
⎪⎨

⎪⎩

foreground, if Ps
b <Ts , or D >Tc,

or (1− Ps
b )D > 1

ρ (1−Ts)Tc

background, else
(14)

where ρ is a scale factor. (1 − Ps
b )D > (1/ρ)(1 − Ts)Tc

means when both SILTP feature and color information change,
the joint threshold can be smaller than the product of those
two thresholds. Our purpose is that we can detect more
whole moving objects while restraining false alarm rate at
the same time. To detect more whole moving objects, we
should increase Ts and decrease Tc, but this will make false
alarm rate higher. Therefore, our joint judgement is crucial.
We have realized the fact that both the color information

and SILTP information may change obviously in the fore-
ground region, while this case does not easily happen in
the background region. Thus, the product of SILTP feature
change and color information change can be very small in
the background area, thus we are able to divide the joint
judging threshold by ρ to detect more effective foreground
areas, while false foreground detections in the background
area can still be restrained. Fig. 5 shows the advantage of our
joint judging strategy. ρ = 1 means the joint judging condition
(1 − Ps

b )D > (1/ρ)(1 − Ts)Tc does not make sense, and
the comparison of Fig. 5(a) and (c), and Fig. 5(b) and (d)
shows that a proper value of ρ can help detect more effective
foreground parts while avoiding false detections at the same
time. The reason why we do not use the joint judging strategy
only is that sometimes only texture or color information is
efficient while the other makes no difference, and in this
case, the product of the SILTP feature change and color
information change will be too small and unstable, leading
to miss detection of the foreground parts. Therefore, all the
three parts are needed.

Through this, we can get our final decision based on the
integration of SILTP information and color information.

V. QUALITY MEASURE DESIGN

Traditional quality measure for moving object detection
is pixel based, which means it only cares about how many
foreground pixels are correctly detected, and how many
background pixels are incorrectly detected as foreground
pixels. However, it does not work for moving object detection,
and may even be improper. Fig. 6 shows some samples of
moving object detection results. According to the traditional
measure, the middle result image outperforms the left one, but
in fact, in the left one, the moving object can be unbrokenly
detected while it is detected broken in the middle one.
As for the right one, high performance can be achieved with
pixel-based quality measure, but several moving objects are
actually detected as one. Therefore, the pixel-based quality
measure is not proper for moving object detection since the
goal of moving object detection is to detect moving objects
separately without breaking.

The main purpose of our background-modeling process is
to detect the whole of every moving object without breaking.
Therefore, in the input frame, the best result is that there
is a one-to-one correspondence between the groundtruth of
the moving objects and the detected contiguous regions.
In particular, if the foreground mask of one moving object
in the detecting result is fractured into several parts, or the
foreground masks of several moving objects are connected as
one, the performance measure should be degraded.

Suppose the groundtruth of the foreground mask of the
frames for evaluation is Mt, and the detection result of the
foreground mask is Md . All the contiguous regions of Mt

and Md are detected, and then, their bounding rectangles
are obtained, named as Bt and Bd. The major issue of
the evaluation process is to get the match degree between
Bt and Bd . Before the matching process, some small bounding
rectangles in Bd whose sizes do not meet the requirement of
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Fig. 5. Foreground detection results. (a) and (b) Detection results of one frame. (c) and (d) Detection results of another frame. ρ = 1 for (a) and (c) and
ρ = 9 for (b) and (d).

an effective object are removed. This requirement is that the
height and the width of the bounding rectangle should be both
larger than Sm (Sm = 4 here) pixels. The matching function of
one bounding rectangle in Bt with another bounding rectangle
in Bd is designed as

�(Bd
i , Bt

j ) =
{

1, if (Bd
i ∩ Bt

j ) > κ(Bd
i ∪ Bt

j )

0, else
(15)

where κ is a threshold indicating the minimum overlapping
ratio needed for matching, Bd

i is the i th bounding rectangles
of Bd , and Bt

j is the j th bounding rectangles of Bt . With
background subtraction based on moving object detection
methods, one bounding rectangle in Bt or Bd can be matched
with one bounding rectangle at most in Bd or Bt when
κ ≥ 0.5. κ = 0.5 is used in our experiment, so the true
positives of the detecting result can be calculated as

TP =
∑

i, j

�
(
Bd

i , Bt
j

)
. (16)

The false positives and false negatives of the detecting result
can be further computed as

FP =
∑

i

φ
(
Bd

i

)
(17)

where

φ(Bd
i ) =

{
1, if

∑
j �(Bd

i , Bt
j ) = 0

0, otherwise
(18)

FN =
∑

j

ϕ(Bt
j ) (19)

where

ϕ(Bt
j ) =

{
1, if

∑
i �(Bd

i , Bt
j ) = 0

0, otherwise
(20)

if φ(Bd
i ) = 1, it can be known that no matching is found in

the groundtruth for the i th bounding rectangle of Bd . This is
similar for ϕ(Bt

j ).
Table I shows the comparison of traditional quality measures

with ours, which shows the superiority of our quality measure
method for moving object detection.

VI. EXPERIMENTS

Nine data sets are used, provided by [6] to evaluate the
performance of our algorithm. These datasets consist of
challenging videos containing busy human stream, dynamic
background, and illumination variations. Most of the videos
have several thousand frames, and 20 frames of each video

Fig. 6. Some samples of moving object detection results.

are labeled as groundtruth. The frame resolution of Bootstrap
is 160 × 120, and Campus, Curtain, Fountain, Lobby, and
WaterSurface have the same frame resolution 160 × 128,
and the frame resolution of Escalator is 160 × 130 and
ShoppingMall is 320 × 256.

We compare our results with several state-of-the-art
background modeling methods to show the efficacy of
our algorithm. These methods include MoG [2], block-
wise LBP histogram-based method (LBP-B) [17], pixelwise
LBP histogram-based method (LBP-P) [10], and multiblock
SILTP-based pattern kernel density estimation (PKDE) meth-
ods (PKDEw=3

mb−siltp, PKDEw=1+2+3
mb−siltp ) [11]. Block-based back-

ground modeling method based on Integration of Texture and
Color information is denoted by BITC.

For MoG, the standard implementation in OpenCV2.3.1 is
used with default parameters. For LBP-B and LBP-P, we found
better parameters than the suggested ones in our tested videos,
and further tuned the parameters for every dataset to achieve
nearly optimal results. Therefore, it will be more challeng-
ing for our algorithm to compare with LBP-B and LBP-P.
For PKDEw=3

mb−siltp and PKDEw=1+2+3
mb−siltp , the suggested parame-

ters in [11] are used, because the algorithms perform very
well with those parameters. The suggested parameters are:
1) SILTP0.05

4,1 operator; 2) K = 3; 3) Tb = 0.7; 4) Ts = 0.01;
5) Tm = 0.01; and 6) α = 0.005. For the proposed
algorithm, fixed parameters for all the videos are applied,
and these parameters are: 1) SILTP0.05

4,1 operator; 2) Sb = 8;
3) α = 0.005; 4) η = 1; 5) Ts = 0.55; 6) W = 50; 7) Tc = 0.1;
8) ρ = 9; 9) κ = 0.5; and 10) Sm = 4. The compared
algorithms are tested on all the videos, and all the quality
measures are obtained, including those defined in Section V.

Of all the parameters, Sb, Ts , Tc, and ρ play important roles
in the performance of our algorithm. If Sb is too small, the
histogram model of each big block is unstable and sensitive to
noises, and more computation time and memory resource will
be cost to get the background model compared with bigger Sb.
To the contrary, if Sb is too large, too much local information
will be lost and the classification will be too coarse. For
static background scenes, Ts can be larger to detect more
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TABLE I

COMPARISON OF TRADITIONAL QUALITY MEASURE METHOD WITH OURS

Fig. 7. F-score of our algorithm on different kinds of videos with different Ts .

foreground parts. For dynamic background scene, a large Ts

will result in many background parts being detected as the
foreground while a small Ts will result in incomplete detection
of the foreground. For scenes without frequent illumination
variations, Tc could be smaller to detect more foreground parts.
For scenes with frequent illumination variations, Tc should be
lager to avoid false foreground detection in the background
region since color information is just a supplement in the
proposed moving object detection. A large ρ can help detect
more valid foreground parts but will result in higher false
alarm rate while a small ρ loses some foreground parts.

To determine suitable parameters, the performances of
different values of parameters Ts , Tc, and ρ which directly
affect our decision on various kinds of videos are analyzed.
Four videos are used here: 1) Hall for indoor busy scene
with moving cast shadows; 2) Campus for significant
dynamic background scene; 3) Lobby for indoor scene with a
sudden illumination change; and 4) WaterSurface for general
dynamic background scene. Figs. 7–9 show the F-score (23)
results. When considering the performance of one parameter
with different values, the other parameters are fixed as
before. We first keep two parameters fixed and observe the
performance line of the left parameter in all kinds of videos to
get a good value of this parameter, then we do the same for the
other two parameters to get coarse good values. Gradually, by
experimenting many times, we can get the real near optimal
values of all the three parameters. From Fig. 7, we can see
that the peak point of Campus has the smallest Ts , followed
by WaterSurface, Hall, and Lobby. The result is consistent
with the fact that the more severely the background changes,
the smaller Ts should be fixed to achieve good performance
(though Lobby contains sudden illumination change, the

Fig. 8. F-score of our algorithm on different kinds of videos with different Tc.

Fig. 9. F-score of our algorithm on different kinds of videos with different ρ.

background is very stable actually, and the illumination
variation can be adapted after a little while). The F-score
of our algorithm here mainly relies on the color information
when Ts is very small, and the F-score rises when Ts increases
from a small value for videos Hall, Campus, and Lobby,
which means SILTP information is a good supplement for
color information for these kinds of videos. The reason why
SILTP information does not help for video WaterSurface is
that background and foreground are both very smooth and of
strong color contrast. Ts = 0.55 is just a balance between all
kinds of videos. Since a bigger Tc will result in less influence
of color information on the performance of our algorithm,
color information does have benefits considering the result
in Fig. 8. However, a too small Tc will result in many false
detections, so we choose Tc = 0.1 as a tradeoff. From Fig. 9,
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it can be seen that neither a small value of ρ nor a big value
of ρ is a good choice. We just choose ρ = 9 as a tradeoff also.

The next step is to evaluate the performances of all the
algorithms on all the nine video sequences. Recall, Precision,
F-score, memory usage and Framerate will all be considered.
TP, FP, and FN are already given in Section V. Then, Recall,
Precision, and F-score can be obtained by the following
equations:

Recall = TP

TP + FN
(21)

Precision = TP

TP + FP
(22)

F-score = 2 · Recall · Precision

Recall + Precision
. (23)

All the experiments are done on a standard PC with
2.93-GHz CPU(dual core), 4G memory, and Windows 8
operation system. All the algorithms are implemented in C++.
Table II shows the quality measures for all the algorithms on
the test videos of all the methods for comparison. Besides,
Table III shows the average performance of all the algorithms
on the nine videos.

From Table III, it can be seen that the average performance
of our algorithm is outstanding. Recall is nearly the best,
Precision and F-score are much better than those of other
methods, respectively, memory usage is the lowest, and frame
rate is only lower than that of MoG. From Table II, we can see
that the memory usage of our method is the smallest for all the
videos. The frame rate of MoG is the highest, but PKDEw=3

mb-siltp
and our BITC also perform well. Particulary, we can see that
the frame rate of our algorithm in ShoppingMall(320 × 256)
is 63 frames/s, which is super real time. Considering the
detection performance, the only video on which our method
performs much worse than other methods is Campus, which
contains strongly swinging trees. It has already been discussed
before that Ts should be smaller when there exists dynamic
background. The more severely the background varies, the
smaller Ts should be. Our fixed parameter can handle gen-
eral dynamic background modeling problem well, which
can be seen from videos Curtain, Escalator, Fountain, and
WaterSurface. However, the trees in Campus wave so strongly
that the fixed Ts = 0.55 is not capable to handle this well.
We further tune the parameter Ts to 0.5 and find that the result
is improved greatly with F-score 0.8136. In WaterSurface,
LBP-P is a little better than our method in Recall, Precision,
and F-score, but its parameters have been tuned to nearly
optimal. When Ts of our method is tuned to 0.5, the F-score is
0.9756, better than LBP-P. Here, just for the sake of fairness,
we use the same parameters for comparison. By the way, we
cannot ensure that the F-score of our method will always
outperform other methods in all cases. What we are doing
is to ensure that our method can perform better in most of the
cases. Moreover, we get high performance while keeping low
memory cost and high processing speed of our method.

We further analyze the performance of our method on
different kinds of videos. Videos Curtain, Fountain, and Water-
Surface are very similar, since all of them contain big moving
objects and dynamic background. The recalls of our method in

these three videos are all 1.0 while the precisions are also high,
so we can see that big moving objects can be easily detected in
this kind of video while there may exist a few false detections
of foreground in the background region. Videos Bootstrap,
Escalator, Hall, and ShoppingMall all have busy pedestrians
and moving cast shadows. Though our algorithm performs the
best on these four videos, the absolute performance still needs
improvement except for that in ShoppingMall, which has good
illumination conditions and viewing angle. In such busy scene,
adjacent moving objects are easily to be detected as one,
and one moving object may be split when the illumination
condition is bad or when there exist moving cast shadows.
Video Lobby contains turning OFF and turning ON of the light,
but our method can still perform well in such cases, which
indicates that our method can adjust to sudden illumination
variation quickly.

To analyze the moving object detection result more
concretely, we further give qualitative foreground detection
results shown in Fig. 10. One typical frame is picked out for
each video to show the varied performances of our compared
algorithms on it.

For the picked frames of videos Curtain, Fountain, and
WaterSurface which contain big moving objects and dynamic
background, our BITC method achieves good performance
on all the three, and the only big moving object of each
video is detected unbroken with no false detection. The
foreground and background of the frame of video Curtain
has strong contrast in color information while the texture
information tends to be similar in some parts, and this leads
to the good performances of MoG and our BITC. In contrast,
LBP-B and LBP-P lose much foreground part resulting in the
breakage of the only foreground object and PKDEw=3

mb-siltp and

PKDEw=1+2+3
mb-siltp have holes (though we do not care about holes

in our quality measure design, it is still not good to have holes
since foregrounds with holes are more likely to be fractured) in
the human body. The foreground object in the fountain frame
has been standing still for a short while. Pixel information-
based methods MoG, PKDEw=3

mb-siltp and PKDEw=1+2+3
mb-siltp are

easily to lose foreground parts which will make the foreground
object fractured because each pixel is judged separately.
In contrast, block information-based methods LBP-B, LBP-P,
and our BITC are able to detect the whole foreground object
since the information of a big block is considered together.
The down part of the feet in the result of MoG is missing
due to the similarity of color information between background
and foreground there, and the foreground is fractured. After
observing the results of these three videos, we can find that
our integration framework of texture information and color
information is effective and is beneficial to the results, and
that block-based information is more stable.

For the picked frames of videos Bootstrap, Escalator,
Hall, and ShoppingMall which are indoor scenes with busy
pedestrian stream and moving cast shadows, our BITC method
works well with few false detections except for that of
Escalator whose foreground is too busy which leads to the
connection of different moving objects. Moreover, most of
the cast shadows are removed by our method. The MoG
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TABLE II

DETECTING RESULT QUALITY MEASURES FOR ALL THE TEST VIDEOS OF ALL THE METHODS FOR COMPARISON

misses a lot of foreground parts in all the picked frames
of these videos since it cannot handle illumination variations
and the color difference between foreground and background
is small. The LBP-B method can detect most of the foreground

parts, but many background parts around the boundary of the
foreground are detected as the foreground, which may lead
to the connection of adjacent moving objects. In addition,
there also exist some false detections and foreground fractures.
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TABLE III

AVERAGE DETECTING RESULT QUALITY MEASURES OF ALL THE TEST VIDEOS OF ALL THE METHODS FOR COMPARISON

Fig. 10. Moving object detection results of all the compared algorithms on selected frames from all the tested videos.

LBP-P can achieve better foreground boundary than LBP-B,
but is still not good enough. Furthermore, when some
parts of the foreground are similar to the background in
LBP information, the resulting detected foreground may be
cataclastic as observed in the result of Bootstrap. PKDEw=3

mb-siltp

and PKDEw=1+2+3
mb-siltp perform well in these video frames. Com-

pared with these two methods, our BITC does better in dealing
with the moving cast shadow problem. As shown in the
detection results of ShoppingMall, some cast shadows become
separate false detections by PKDEw=3

mb-siltp and PKDEw=1+2+3
mb-siltp ,

but this does not happen in our BITC method. One foreground
object in the middle is broken by our method, because both
the color information and the SILTP information of the feet
of that pedestrian are similar to those of the background there.
All the methods do not perform well in the selected frame of

Escalator. The block-based methods tend to connect different
moving objects because these objects are too small and close
to each other, while the pixel information-based methods tends
to miss much foreground part since the color information or
the texture information of some foreground parts is similar
to the background there. The detection result of the frame of
Hall also shows that block-based methods are easily to connect
different moving objects than pixel-based methods. To sum up,
our BITC method can detect most of the foreground parts in
busy scenes and can handle the moving cast shadow problem
but tends to connect different moving objects when they are
too close to each other.

From the picked frame of video Lobby, which is an indoor
scene with light switching, we can see that all the methods can
adapt to global illumination variation after a while. The two
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Fig. 11. Foreground detection result of the picked frame of video Campus
by our BITC method when Ts is tuned to a smaller value.

pedestrians in the frame have been standing there for a
little while, and as stated before, the block information-based
method trends to be more stable in such conditions since the
information of a block is considered together.

The last video is Campus, which contains strongly swinging
trees. The detection result of our method is not good based
on the chosen fixed parameters since there exist many
false detections. However, the result can be much better
when we tune the parameter Ts to a smaller value, as shown
in Fig. 11. For practical use, we can further figure out a rule
for the tuning of Ts and Tc for the users to handle the extreme
conditions.

VII. CONCLUSION

In this paper, we have proposed a fast blockwise back-
ground modeling algorithm with the integration of SILTP and
color information. A block-based model with single SILTP
histogram has been proposed and is able to handle dynamic
background and multimodal problems. Dominant background
patterns are selected from the SILTP histogram model for
calculating the background likelihood of the new coming
block. A detection judgement is given on smaller blocks
to get more accurate detection boundary than judging big
blocks. A temporary background image is updated for the
calculation of the color information change of each small block
in the new coming frame. The SILTP information and color
information have been integrated for much more effective
detection of moving objects than separately applied. A new
quality measure is proposed for evaluating the performance
of our method on various challenging videos, and the result
is quite outstanding compared with the other state-of-the-
art methods. The memory consumption is low while the
processing speed can be superreal time in videos of resolution
320 × 256. Further detailed analysis shows that our method
is robust to illumination variations, dynamic background, and
moving cast shadow problems.
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