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Abstract

Face recognition, which is security-critical, has been
widely deployed in our daily life. However, traditional face
recognition technologies in practice can be spoofed easily,
for example, by using a simple printed photo. In this pa-
per, we propose a novel face liveness detection approach
to counter spoofing attacks by recovering sparse 3D facial
structure. Given a face video or several images captured
from more than two viewpoints, we detect facial landmarks
and select key frames. Then, the sparse 3D facial struc-
ture can be recovered from the selected key frames. Finally,
an Support Vector Machine (SVM) classifier is trained to
distinguish the genuine and fake faces. Compared with the
previous works, the proposed method has the following ad-
vantages. First, it gives perfect liveness detection results,
which meets the security requirement of face biometric sys-
tems. Second, it is independent on cameras or systems,
which works well on different devices. Experiments with
genuine faces versus planar photo faces and warped photo
faces demonstrate the superiority of the proposed method
over the state-of-the-art liveness detection methods.

1. Introduction
Face recognition system, due to its fast development dur-

ing last decades, has been widely used in our daily life, such
as access control, visual surveillance and compute applica-
tion security. However, most traditional face recognition
systems are vulnerable to direct sensory attacks. That is, a
simple printed photo or a photo demonstrated on a screen
can easily fool the system and an invalid user may gain the
access control which may result in severe security problem.
Face liveness detection, which aims to judge the face bio-
metric captured from a genuine person or a fake replica, is
becoming a critical technique for traditional face recogni-
tion system.
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Figure 1. A comparison of recovered sparse 3D facial structures
between genuine and photo face. There are significant differences
between structures recovered from genuine and photo face.

According to the information (features) used, the exist-
ing face liveness detection methods can be roughly divided
into three main categories: challenge-response based meth-
ods [12, 2, 8, 16], skin property based methods [15, 10, 13,
18] and 3D structure based methods [3].

The challenge-response is a human-computer interaction
(HCI) method. The users are asked to response to the spe-
cific facial actions given by computer so that the genuine
and fake faces can be classified. Eye blinking [12, 16], head
rotation [2, 8], and mouth movement [8] are the most com-
monly used facial actions. The challenge-response methods
achieve good results for face liveness detection. However,
the users are asked to be highly cooperative with the system,
which limits its application in practice.

The skin property based methods classify the genuine
and fake face images by analyzing their textures or re-
flectance properties. Tan et al. [15] extracted the latent
reflectance information from a captured image, and used
a sparse low rank bilinear discriminative model to classify
the genuine and fake faces. Maata et al. [10] analyzed fa-
cial image textures using multi-scale local binary patterns
(LBP) to classify the genuine and fake faces. These meth-
ods assume the quality of face images is different with that
of real ones and more noise and artifacts are included in
fake images. However, with the development of printing
technology, it is increasingly difficult for these methods to
work reliably.



Recently, the multi-spectral methods have been proposed
to analyze the reflectance properties of human skin so that
the genuine and fake faces can be classified. In [13],
Pavlidis and Symosek illustrated how to capture face im-
ages at two wavelengths in Near Infrared (NIR), and used a
thresholding method to classify the genuine and fake faces.
Zhang et al. [18] proposed a method for face liveness de-
tection by analyzing the energy under multi-spectral. The
shortcoming of multi-spectral method is that it needs addi-
tional devices to capture multi-spectral images which is not
always applicable in practice.

3D structure based methods make use of 3D structure in-
formation to classify the genuine and fake faces. Obviously,
a planar photo gives a flat structure whereas a genuine face
yields a quite different structure (e.g., nose is convex com-
pared to cheek). To the best of our knowledge, few studies
have been devoted to this kind of method, among which the
work of Choudhury et al. [3] is the most representative one.
They mentioned that the depth information can be used for
differentiating planar faces and real ones, but no further ex-
periments were conducted in their work.

In this paper, we propose a novel face liveness detection
method by analyzing the sparse structure information in 3D
space. As shown in Fig. 1, structures recovered from gen-
uine faces usually contain sufficient 3D structure informa-
tion, while structures recovered from photos are usually pla-
nar in depth. We firstly recover the sparse 3D facial struc-
ture with the input images and then an SVM classifier is
trained based on the 3D structures from the genuine and
fake faces. Different from the reflectance based methods,
the proposed method is device independent and can work
well with various inputs as long as two images from differ-
ent viewpoints are provided.

The rest of the paper is organized as follows: Section
2 and 3 details our sparse structure recovery method and
the classification method, respectively. Experiments com-
pared with recently proposed LBP method are demonstrated
in Section 4 and in Section 5, we conclude the paper.

2. Sparse 3D Facial Structure Recovery
The face images with different viewpoints can be cap-

tured from a fixed camera with face moving or reversed.
But the recovery is conducted under the assumption that the
images are derived from a static face and a dynamic camera.

In this work, we firstly use CLM algorithm [14] to locate
the sparse facial landmarks. Considering that neighboring
frames almost have the same viewpoint, which is useless for
structure recovery, we select proper frames using a graph
similarity metric in the next step. We call such frames as key
frames, which have much diversities in terms of viewpoint.

Once we have obtained two key frames, the camera pa-
rameters and initial facial structure are recovered. Notably,
general geometry reconstruction algorithm is not applicable

to deformable object, such as face. However, face deforma-
tions are often caused by local expressions, which occurs
most likely in the regions of mouth. Among all the land-
marks, only a bit of them locate near mouth. Therefore,
we recover facial structures regardless of the deformation,
which is proved to be feasible to face liveness problem in
our experiments.

Finally, facial structure refinement is taken to refine the
initial recovered results and new key frames are added into
the bundle adjustment because that the structure recovered
from merely two face images may be affected by imprecise
detection of landmarks and inaccurate estimation of camera
parameters.

2.1. Key Frame Selection

In our work, key frames are defined as those frames
which are propitious to recover facial structure. We rely on
graph similarity to incrementally extract key frames from an
input sequence which are more likely to be those captured
in various viewpoints in practice. In the case that a certain
relative motion between the face and the camera happens,
it is obvious that locations of facial landmarks in the im-
age will be various along with the motion. That is, differ-
ent viewpoints will lead to different distributions of facial
landmarks. Based on this relation, we compute the distri-
bution distance of landmarks to evaluate the difference of
viewpoints between current frame and existing key frames
in pool. Specifically, we represent the landmarks in a face
by an undirected graph G =< V,E >, where V repre-
sents landmarks and E connects all the nodes. To measure
the similarity between two graphs, we build an affinity ma-
trix W68×68 for each graph, whose entries are the spatial
Euclidean distance between two nodes. Assume we have
obtained M key frames F = {f1, f2, ..., fM}, and their
corresponding affinity matrixes {W1,W2, ...,WM} as well.
Then, the maximum similarity (minimum distance) of cur-
rent frame fc to previous M key frames is obtained by:

S = max
i
exp

(
−
∥∥∥∥ Wfc

‖Wfc ‖∗
− Wi

‖Wi ‖∗

∥∥∥∥
∗

)
(1)

where ‖ · ‖∗ represents the Frobenius norm. If S is smaller
than a pre-determined threshold (in this paper, we set it 0.1),
we regard current frame fc as a key frame, and add it to F ;
otherwise, we turn to the next frame.

2.2. Initial Recovery from Two Images

In this subsection, we describe our algorithm for ini-
tial facial structure recovery based on facial landmarks
from two face images with different viewpoints. Let q =
{q1, q2, ..., qN} be the facial landmarks in one image and
q′ = {q′1, q′2, ..., q′N} in another image, where qi denotes
a 2D point in the image, N is the number of facial land-
marks for a face (N=68 in our experiment). In our work,



we adopt the perspective camera model [6], in which a 2D
point qi projected from a 3D structure point Qi can be rep-
resented as: qi = PQi, where P is a 3 × 4 perspective
projection matrix. Both qi and Qi are in homogeneous co-
ordinates. Camera projection matrix P can be decomposed
as: P = K(R, t). Before initial structure recovery by trian-
gulation [7], we have to estimate camera intrinsic matrix K
and the relative pose (R, t) between the two given images.

In order to make our approach work well on different
cameras, we propose an auto-calibration method for our
face application. In this work, we make the common as-
sumption that the intrinsic matrix K is constant over the
whole video sequence. Generally, the intrinsic matrix is for-
mulated as a 3× 3 upper triangular matrix [6]:

K =

 fx s ux
0 fy uy
0 0 1

 (2)

where fx and fy are the focal length in terms of pixel di-
mensions in the direction of x-axis and y-axis, respectively.
ux and uy are the projection of optical center. s is referred
to as the skew parameter. Suppose that the camera sensor
pixels are in the shape of square, and the projection center
is coincide with the image center, we have fx = fy = f ,
and ux = uy = 0 if the origin of the image coordinate
is set at the center of image. The skew parameter s is
equal to zero for most normal cameras. As a result, the
intrinsic matrix can be simplified with only one parameter
f , that is, K = diag(f, f, 1). To derive K, we utilize a
predefined normal (upright and frontal) 3D facial structure
Qmodel = {Qmodel

1 , Qmodel
2 , ..., Qmodel

N } recovered from
a calibrated camera. Qmodel is scaled to the physical size
of a face in our work (i.e., 10 cm between the center of two
eyes). Thus, given Qmodel and facial landmarks q , we can
roughly estimate K by optimizing the following equation:

K∗ = argmin
K

N∑
i=1

d
(
qi,K(Rm, tm)3×4Q

model
i

)
(3)

where (Rm, tm)3×4 represents the rigid transformation (ro-
tation matrix R3×3 and translation t3×1) on Qmodel, d(·)
computes the Euclidean distance between two given points
represented in homogeneous coordinates. In Eq. (3), es-
timating {K,Rm, tm} simultaneously is intractable. Alter-
natively, we traversing all possible (Rm, tm) to find the best
matching. Let ωx, ωy , ωz be the rotation angles of Qmodel

whose 2D projection is similar to q, in three axes, respec-
tively. First, we rotate the landmarks around z-axis (per-
pendicular to image plane) to make the pair of eyes hori-
zontal. This rotation can only get an upright face projec-
tion (ωz = 0), whereas ωx and ωy may be non-zero for
deflecting viewpoint. Therefore, we uniformly discretize
the rotations around x-axis and y-axis to nx and ny states,

respectively. Then, based on Least Square Error (LSE) al-
gorithm, we find the optimal K with minimum residual er-
ror by traversing all the nx × ny possible ωx and ωy (in
this paper, nx = ny = 20). There is one point need to
be known that the above procedure only gives a rough K,
which will be further refined in the following step. Clearly,
if the camera has been calibrated accurately, we can skip
above procedure. However, knowing exact intrinsic matrix
is not feasible in many circumstances practically.

Then, we extract the relative pose (R, t) based on land-
mark correspondences {(q1, q′1), (q2, q′2), ...(qN , q′N )}. Ac-
cording to [6], essential matrix ε has the form of ε = [t×]R,
where [t×] is the skew-symmetric cross-product matrix of
t = (tx, ty, tz)

T :

[t×] =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (4)

Once the essential matrix is estimated, camera relative pose
can be extracted straightforwardly. So, the question is how
to compute the essential matrix ε. It can be estimated us-
ing the epipolar constraint qTi εq

′
i = 0. The general linear

algorithm [6] needs eight or more point correspondences
and minimize epipolar distance over all points. In our case,
however, the facial landmarks may be detected with noises.
We adopt a random sample consensus scheme (RANSAC)
[4] to robustly estimate the essential matrix ε. For each
RANSAC loop, a candidate essential matrix is obtained us-
ing an efficient non-linear minimal algorithm [11] which
needs at least five correspondences. Upon the completion
of RANSAC, we choose optimal ε with minimum average
residual error.

After getting camera intrinsic matrixK and relative pose
(R, t), the projection matrixes of two images is obtained by
the following equation:

P = K(I,0)
P ′ = K(R, t)

(5)

where I is a 3 × 3 identity matrix. Given P and P ′, we
implement a triangulation algorithm [7]:

min

N∑
i=1

[d(qi, q̂i) + d(q′i, q̂
′
i)] (6)

where q̂i and q̂′i are the reprojections of the recovered struc-
ture Q̂ = {Q̂1, Q̂2, ..., Q̂N} on two given images. Though
key frame selection is conducted, a special situation that
viewpoints of two images are too similar is considered in
our paper. In other words, the rotation angle θ, which can be
obtained from R directly, between the two images is small.
In this case, the triangulated 3D points will be far from the
real structure, especially in the depth (z-axis). To address



such problem, we add an extra soft constraint on the trian-
gulation, which is defined as:

C = ω (θ)

N∑
i=1

d
(
Q̂i, Q

model
i

)
(7)

where, ω is the weight function to the soft constraint, which
is defined as ω(θ) = exp(−15θ/π) in our experiment. This
constraint can be regarded as a prior on the facial structure.
The recovered structure which is different from a natural
face much is less likely to be a correct estimation.

2.3. Facial Structure Refinement

As illustrated above, the facial structure can be recovered
based on two images from different viewpoints. However,
such recovered results may not be accurate due to inaccu-
rate detection of landmarks or rough estimation of K. In
this subsection, we describe the facial structure refinement
step to obtain a more accurate facial structure, where new
key frame is added into the refinement one by one. Given
the projection matrixes P = {P1, P2, ..., PM , Pnew} of re-
fined M key frames and a new key frame, our goal of re-
finement is to minimize the reprojection error between pre-
dicted points and detected landmarks over all key frames:

min

M+1∑
j=1

N∑
i=1

d2 (q̂i,j , qi,j) (8)

where q̂i,j = PjQ̂i is the ith predicted point on image j,
qi,j is the ith landmark on image j.

First, the pose (external parameters) (Rnew, tnew) of
the new key frame is estimated using Grunert’s algorithm
[5], rather than the method described in above subsection.
According to the estimated (R, t), the distance error be-
tween predicted points q̂ and landmarks q can be com-
puted. For those frames which have large error, we re-
gard them as useless key frames and skip to refine the
next key frame. Next, we group the parameters which
will be refined together: Θ = {K,T , Q̂} where T =
{(R1, t1), (R2, t2), ..., (RM , tM ), (Rnew, tnew)} is the ex-
ternal parameters for every frame. Subsequently, we use a
sparse bundle adjustment algorithm [9] to optimize Eq. 8
with the input of Θ, which solves by a fast Levenberg-
Marquardt (LM) optimization algorithm.

With the increasing number of key frames, we can re-
cover a more and more accurate facial structure. This pro-
cess will stop when the 3D structure difference between cur-
rent recovered result and the last one is less than a threshold.
The metric formula is similar to Eq.(7).

3. Liveness Detection
3.1. Structure Alignment

After we recover the sparse 3D structure, we first align
these structures and then structure features are extracted for
classification. In this work, we use a predefined 3D facial
structure as a reference to align a recovered structure using a
coarse-to-fine way. Intuitively, given two sets of 3D points,
the reference Qmodel = {Qmodel

i } described in subsection
2.2, and a sample Q = {Qi} need to be aligned, our goal
is to estimate the rigid transformation (scale s, rotation R
and translation t) which minimizes the sum of distances be-
tween these two sets of 3D points.

At first, we take an initial (coarse) alignment on Q to fit
Qmodel. The rigid transformation {s0, R0, t0} is obtained
by minimizing the following equation using Least Square
Error algorithm.

{s0, R0, t0} = arg min
{s,R,t}

N∑
i=1

d(s(R, t)Qi, Q
model
i ) (9)

The above coarse alignment assigns each 3D point an
equal weight in the minimization procedure. So, the solu-
tion {s0, R0, t0} will be affected by some outliers which
are recovered inaccurately. This case will happen when
facial landmarks are detected inaccurately or the number
of key frames used for recovery is small. Consequently,
we use an iterative algorithm to refine {s,R, t} step by
step. In each iteration, we compute the distances for every
point pair (s(R, t)Qi, Q

model
i ) given current estimation of

{s,R, t}. Afterward, we choose five point pairs with least
distances, which we regard as the most reliable correspon-
dences among all the pairs. These five pairs are utilized for
estimating new {s,R, t}. The iterative process proceeds un-
til the five point pairs with least distances do not change or
the overall iteration times exceed a predetermined threshold
(T = 10).

3.2. SVM Classifier

After alignment, the 3D coordinates of sparse structure
are concatenated to form a feature vector. The SVM clas-
sifier is then trained based on the features to classify the
genuine and fake face samples.

4. Experiments
We evaluate the proposed 3D structure based liveness de-

tection method on three databases, which is compared with
state-of-the-art LBP based anti-spoofing method [10]. The
recovered sparse 3D facial structures for genuine and fake
faces are also presented.

4.1. Database Description

Recently, diverse face databases designed for face live-
ness detection have been proposed, such as CASIA database
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Figure 2. (a) sample frames of a subject from database A, B and C respectively. In each database, we warp the photos horizontally and
vertically. These two kind of warping approximate the real face structure much. (b) recovered structures from genuine face, planar photo,
photo warped horizontally and photo warped vertically, respectively.

[17], NUAA database [15] and Idiap database [1]. However,
these databases do not contain faces with different view-
points so that they are not proper to evaluate our proposed
method.

In this part, we collect three databases using different
quality cameras to examine the anti-spoofing performance
across different devices. In our experiment, we collect 50
subjects, and both genuine and fake faces are collected 5
times with different motion style. The first one (Database
A), second one (Database B) and the third one (Database
C) are collected using a high quality camera (Canon
IXUS115 HS) with resolution of 1920 × 1080, a Logitech
webcam with resolution of 800× 600 and a camera built in
NOKIA C6 mobile phone whose resolution is 640 × 480,
respectively. All these three databases records 250 genuine
faces and 750 fake photos which include 250 planar photos,
250 photos warped horizontally (warped 1) and 250 photos
warped vertically (warped 2). Table. 1 presents the number
of video clips in database A, B, C, respectively. Some
examples of images sampled from videos for these three
databases are shown in Fig. 2 (a).

Table 1. The number of videos in database A, B, C, respectively.

Database Genuine
Fake photos

planar warped 1 warped 2
Database A 250 250 250 250
Database B 250 250 250 250
Database C 250 250 250 250

4.2. Results and Discussions

Fig. 2 (b) shows the recovered results from genuine
faces, planar photo and warped photos. It is easy to see that
there are significant differences of 3D structure between the

Figure 3. The relation between liveness detection accuracy and the
number of 3D points in a structure.

genuine faces and the fake ones, so that they are expected to
be well classified based on their 3D structure information.

The number of facial landmarks N is a parameter that
affects the performance of the proposed method. We ex-
amine the affect of N on the anti-spoofing performance on
Database A. In this experiment, we select landmarks ran-
domly. For a certain number of landmarks, we conduct 50
trials, and obtain the average accuracy.

Fig. 3 depicts the relation between the number of points
N and anti-spoofing accuracy. It is obviously shown that
the more facial landmarks, the higher liveness detection ac-
curacy. On the other hand, the more facial landmarks, the
more complex of reconstruction with heavier computation
cost. Therefore, we set N = 48 with the highest detection
accuracy (100%) but the least number of landmarks in our
experiment.

In this part, we show the face liveness detection perfor-
mance within and cross devices. In the first experiment, the
samples in the training set and testing set are all collected
using the same device. For Database A, B and C, 125 sub-
jects are randomly selected to form the training set and the
left subjects form the testing set. There is no intersection



Figure 4. Performance on database A, B, C respectively (a) and on
cross database (b).

between the training and the testing sets. Fig. 4 (a) shows
face liveness detection results of the proposed method and
texture based one (i.e., LBP), whose score is the average
value of the face frames of the video. It shows that both the
texture and proposed 3D structure based method perform
well in this case. The proposed 3D sparse structure method
achieves perfect (100%) classification results.

We further test the anti-spoofing performance of differ-
ent methods in the case of cross devices, which is more
common and important in real application. In this part,
one of the three databases is selected as the training set and
the face liveness detection performance is examined on the
other two databases. Fig. 4 (b) shows ROC curves of dif-
ferent methods. The performance of texture based method
degraded dramatically in this case. This is because the qual-
ity of images captured from different devices varies so much
that the model learned from images captured from one cam-
era is not proper any more to other cameras. This is a
great problem in real application. In contrast, the proposed
method, which takes into account the 3D structure infor-
mation, is device independent and hence is robust to this
variation. As expected, the proposed method also achieves
perfect (100%) face liveness detection accuracy, validating
its effectiveness in face liveness detection problem.

5. Conclusion

In this paper, a sparse 3D structure based face liveness
detection method is proposed. Given at least two face im-
ages captured from different viewpoints, the 3D sparse fa-
cial structure can be recovered. Based on this, the genuine
and fake faces like printed photos can be classified. Dif-
ferent from the popular texture based method, the proposed
method is device independent and thus more applicable in
practice. Moreover, the requirements of two images from
different viewpoints is easy to be met in real application
and the proposed method has great potential to be deployed
with the existing face recognition system.
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