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Abstract

Spoofing attacks mainly include printing artifacts, elec-
tronic screens and ultra-realistic face masks or models. In
this paper, we propose a component-based face coding ap-
proach for liveness detection. The proposed method con-
sists of four steps: (1) locating the components of face; (2)
coding the low-level features respectively for all the com-
ponents; (3) deriving the high-level face representation by
pooling the codes with weights derived from Fisher crite-
rion; (4) concatenating the histograms from all components
into a classifier for identification. The proposed framework
makes good use of micro differences between genuine faces
and fake faces. Meanwhile, the inherent appearance differ-
ences among different components are retained. Extensive
experiments on three published standard databases demon-
strate that the method can achieve the best liveness detec-
tion performance in three databases.

1. Introduction
Generally, the sources of illegal attacks mainly consist of

printing photograph, screen images or videos, ultra-realistic
face masks or a 3-D model of an authorized client. Among
these types of attacks, the most flexible one is printing pho-
tographs or screen images captured from internet. Secure
FR systems demand much for the capability of liveness de-
tection (also known as anti-spoofing), which can identify
whether a face is from a real client or only the portrait.

Existing face anti-spoofing approaches can be mainly
categorized into three groups: interaction-based ap-
proaches, multi-spectral illumination based and micro-
textures based ones. Interaction-based approaches aims at
detecting the physiological response of face. This response
can be represented by biometric motions, such as eye blink-
ing [23, 18], head rotation [2], mouth movement [13], and
the holistic motion [12]. These approaches are vulnera-
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Figure 1. The first row is NUAA database [24], the second is
PRINT-ATTACK database [1], and the third is CASIA database
[25]. From left to right: (a) average face for each database; (b)
mean and (c) variance of within-class distance (combining genuine
and fake ); (d) mean and variance (e) of between-class distance; (f)
Fisher ratio.

ble to inaccuracy detection or tracking on face components.
Moreover, users need to be highly cooperative to the sys-
tem and the duration of liveness detection is relatively long.
Chetty et al. [5, 6] proposed a multi-modal approach to
aggrandize the difficulty of spoofing attacks. Though ad-
ditional obstacles are appended to the attackers, the multi-
modal methods also suffer from the operational inflexibility.

The multi-spectral methods utilize the illuminations be-
yond visual spectrum to tackle the anti-spoofing problem.
In [20, 26], it is proved that indistinguishable faces ex-
hibit much different properties from the genuine ones un-
der invisible light. By selecting proper working spectrum,
they can expect that inter-class difference between the gen-
uine and fake faces are to be maximized and the final anti-
spoofing decision is made properly. However, this method
needs extra devices to capture face images under the invis-
ible lights, thus it is unpractical to deploy such devices to
the most of recent FR systems, which are merely based on
RGB color face images.

Another kind of methods exploited the differences of ap-
pearance, including micro-textures and specular reflections
between genuine and fake faces [10]. Li et al. [15] pro-



posed a method based on the analysis of Fourier spectra. In
the work of [24], Tan et al. introduced the Lambertian re-
flection model to discriminate the genuine and fake faces.
Inspired by Tan’s work, Peixoto et al. [21] combine the
DoG filters and standard Sparse Logistic Regression Model
to discriminate the faces captured under bad illumination.
All these methods assume that the filter response on the fake
face are different from the genuine ones. However, both the
assumptions of specular reflectance and blurred edges may
be false in many cases. In the most recent, Maatta et al.
[16] make use of the micro-textures in the holistic faces.
Its anti-spoofing performance outperforms the other meth-
ods using single image on the NUAA Photograph Imposter
Database [24]. The experimental results in [7] proves its ef-
ficiency in REPLAY-ATTACK database. However, dividing
image into blocks rigidly, it is very sensitive to image qual-
ity changes caused by image compression or low-level de-
vices. Moreover, It do not consider the inherent differences
of discriminant abilities among different face locations.

In this paper, motivated by the works in [3, 11, 19], we
introduce a component-based face liveness detection frame-
work on the top of Fisher analysis. We segment the face im-
age into several components, including eyes, nose, mouth,
facial region in the face, as well as the informative regions
surrounding canonical face region. Then, we exploit the dif-
ference among such components according to Fisher analy-
sis in the context of liveness detection.

Contributions of this paper are bellows: (1) we exploit
not only the canonical face region as described in previ-
ous face-oriented works, but also some other informative
regions, such as hair, cheek, etc; (2) Compared with the
methods which uniformly divide image into grids, we pro-
pose a component-based framework, which is consistent
to the face structure, and thus achieve better performance;
(3) Considering the difference contributions among com-
ponents, we impose weights to the components by using a
Fisher separation criterion [9].

2. Overview of Framework
As shown in Fig. 2, we first expand the detected face to

obtain the one which we call holistic-face (H-Face). Af-
terward, we divide the H-Face into six components (parts),
including contour region, facial region, left eye region,
right eye region, mouth region, and nose region. More-
over, we further divide contour region and facial region
into 2 × 2 grids, respectively. For all the twelve compo-
nents, dense low-level features (e.g., LBP, LPQ, HOG, etc.)
are extracted. Given the densely extracted local features,
a component-based coding is performed based on an off-
line trained codebook to obtain local codes. Then we con-
catenates the codes into a high-level descriptor with weights
derived from Fisher criterion analysis. At last, we feed fea-
tures into a support vector machine (SVM) classifier.

3. Variation after Re-Capturing

3.1. Texture Variations

We briefly analyze why local micro textures are use-
ful for liveness detection and how they are changed dur-
ing re-capturing. A significant operational difference be-
tween genuine faces and fake ones is that the former are
captured by camera once, whereas the latter are obtained by
re-capturing images of photos or screens. This will produce
their appearance differences in three aspects: (1) Faces are
blurred because of limited resolution of photos or screens
and re-defocus of camera; (2) Faces appearance vary more
or less for reflectance change caused by Gamma Correction
of camera; (3) Face appearance also change for abnormal
shading on surfaces of photos and screens.

For simplicity, we assume there is a linearity relationship
between the camera output and the flux of incoming light
intensity, that is, no Gamma correction for images. Based
on the dichromatic reflection model [22], the image color
intensity after re-capturing from a image I by a camera with
Dirac delta response is formulated as:

I ′c(x) = [ωd(x)Ic(x)Ec + ωs(x)Ec] ∗G(x) (1)

where the subscript c ∈ {r, g, b}, representing three color
channels; Ec is the intensity of incident lights of color c;
ωd(x) and ωs(x) are the geometric scale factors of diffuse
reflection and specular reflection, respectively. G is the
gaussian blurring kernel.

For simplicity, Let denote two adjacent pixels by pa, pb
in I . Their numerical relation is described by Λ(a, b). We
assume E is achromatic and locally consistent. Then, there
are mainly three factors to affect Λ:

(1) Diffuse reflection: Ideally, when there is no specular
reflections and gaussian blurring, I ′c(x) = ωd(x)Ic(x)Ec.
In this case, if a photo is warped, then ωd may be changed,
and thus Λ as well. Therefore, shape variations can be de-
tected by local textures;

(2) Specular reflection: When there is no shape varia-
tions (that is, ωd(pa) = ωd(pb)) and gaussian blurring, Λ
is determined by ωs. If there is abnormal specular reflec-
tions in images, the differences can be also easily detected
by local textures;

(3) Gaussian blurring: When there is no shape varia-
tions and specular reflection, Λ is determined by the gaus-
sian kernel G. The original relations Λ may be broken be-
cause of local weighted averaging.

Local textures can perceive all the possible variations
during re-capturing, including gaussian blurring, diffuse
and specular reflections. Because of different appearances
and shapes among different regions in a real 3D face, we
can infer that texture vary from one region to another in an
image.
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Figure 2. The flowchart of proposed framework (O represents a feature operator).

3.2. Fisher Criterion Analysis

Re-capturing changes micro textures all-around. We
use Fisher ratio to describe the local difference of micro-
textures between genuine faces and fake faces. To give
quantitative evaluations, all H-Face images are first nor-
malized to a consistent size {142, 120}, and then di-
vided into 20 × 20 blocks with an overlap of {15, 15}.
For each block, LBP features combining various scales
(LBPu2

8,1, LBP
u2
8,2, LBP

u2
16,2) are extracted and concate-

nated to be a single histogram. Then we compute the pair-
wise difference between blocks using Chi-Square distance:

d(Hi, H
′
i) =

n∑
b=1

(Hi(b)−H ′i(b))2

(Hi(b) +H ′i(b))
(2)

where Hi is the histogram of ith block in a H-Face image;
H ′

i is the ith histogram in another H-Face image; and n is
the size of histogram. We first compute the differences be-
tween all the pairs of genuine faces and fake ones, denoted
by Sb = {Sb1, .., SbM}. Meanwhile, the intra differences
are computed for all genuine faces and fake faces, denoted
by Swt = {Swt

1, ..., Sw
t
N}, Swf = {Swf

1 , ..., Sw
f
N}, re-

spectively. Afterward, we compute the within class mean
mw,t, mw,f and variance σ2

w,t, σ
2
w,f . The between-class

mean and variance is denoted by mb and σ2
b . The the ratio

for ith block is derived by:

Ri =
(mw,t +mw,f −mb)

2

σ2
w,t + σ2

w,f − σ2
b

(3)

Fig. 1 shows the ratio map for three databases. As we can
see, NUAA and CASIA have similar ratio distributions. The
PRINT-ATTACK has a different ratio distribution, which
may be caused by the special fringe effects in its fake im-
ages. However, for all three databases, we can see that the
higher ratios occur more densely in the contour regions,
rather than inside regions which are more frequently used
in previous liveness detection works.

4. Effectiveness of H-Face for Recognition
In this section, we verify the improvement of discrimi-

native ability when exploiting contours. Besides the orig-
inal face image scale, five other scales are applied to the
H-Face images. The smallest size of H-Face image is
{0.9, 0.9, 1.1, 1.3} × de, where de is the pixel distance be-
tween two eyes. We amplify their values by multiply a
chains of scales {1.0, 1.2, 1.4, 1.6, 1.8}. Meanwhile, dif-
ferent texture operators, including Local Phase Quantiza-
tion (LPQ) [17], concatenated histogram of LBPs (LBPu2

8,1,
LBPu2

8,2, LBPu2
16,2) and the one with block division [16] and

Histogram of Gradient (HOG) [8] are performed for the H-
Face images with all scales.

As shown in Fig. 3, for NUAA database, it can be seen
that there is an overall improvement on the accuracy for all
the features, and the higher performance occurs at the scales
of 1.6, 1.8. The results for PRINT-ATTACK database show
that we can achieve a positive effect with the increase of
H-Face image size when using MsLBP and LBP features,
whereas a fluctuate effect when using the other features. It
can be explained that the LBP operator is densely imple-
mented for each pixel in various scales. Though the LPQ
is also a densely sampled feature for each pixel, its blur-
invariant property may result in a negative effect on live-
ness detection. For HOG feature, it is sensitive to edges
in background regions. For the CASIA database, it can
be seen that the increase of scales also has a positive ef-
fects on the performance for all feature types. According
to the experimental results, when the scale increase to 1.6
or 1.8, accuracies of some tests start to decrease. By re-
visiting Fig. 1, we find that only the additional contour
regions may boost the recognition performance, whereas
additional background regions may have negative effects.
Consequently, we choose multi-scale LBP and set a optimal
scale (=1.6) for all the databases in the following experi-
ments. The LBP feature for each pixel in the following ex-
periment is extracted by concatenating four 8-bits LBP8,1,
LBP8,2, LBP8,3, LBP8,4, and 16-bits LBP16,2.
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Figure 3. From left to right, the databases are: NUAA, PRINT-ATTACK and CASIA databases. We choose overall test scenarios for all
databases. The parameters for LPQ were M = 5, a = 1/5, ρ = 0.9. The cell sizes of HOG are set to be 16 and 32.

5. Component Dependent Face Coding

We propose a component dependent coding method to
better make use of the differences among different regions.
Compared with those method dividing image into blocks
uniformly, the proposed division method is more consistent
to the ratio distribution, and can retain the structure infor-
mation.

5.1. Components Coding

After extract the low-level features in all the twelve com-
ponents, coding is conducted to derive high-level represen-
tations of each component from low-level descriptors. In
this paper, we simply choose vector quantization (VQ) [14]
to code the features since it is widely used and has a sim-
ple coding algorithm, though other coding methods are also
feasible. VQ algorithm is a simple yet effective coding
method. The most original VQ algorithm is analogous to K-
means clustering. It assign feature vector xi a single scalar
code αi = 1k, which means xi belongs to kth cluster.

Mathematically, VQ coding solves a constrained least-
square problem as follows:

arg min
K

N∑
i=1

||xi − Cki ||
2 (4)

whereK = {k1, k2, ..., kN} denote the index of codewords
for feature vectors, and C = {C1, C2, ..., CK} is K code-
word centers in the feature space.

To retain the independency among components, the cod-
ing is conducted for each component separately. The low-
level feature vectors are randomly sampled in the region
of component c from all the training samples, then we uti-
lize VQ algorithm to train the codebook CBc for compo-
nent c. After obtaining the codebooks, we derive codes
A = {α1, α2, ..., αN} for N pixels (patches) within a H-
Face image by using the corresponding codebook, then ex-
pand each code to a vector with the same length of code-
word by adding zeros to the other dimensions, denoted by
A = {α1,α2, ...,αN}.

5.2. Weighted Pooling

There are two typically pooling strategies, average and
max pooling. Average coding can flexibly unify the pool-
ing results from VQ and SC algorithm to a discrete proba-
bility distribution (a normalized histogram). In this paper,
we use a modified average pooling algorithm to extract the
high-level image representations for each component. Our
method takes the Fisher ratio maps into account. It takes the
weighted average of codes over a component:

hr =
1

|Ω|
∑
i∈Ω

riαi (5)

where ri is the Fisher ratio at ith point. The Ratio map is
first smoothed with a gaussian kernel (w = 3, σ = 0.1),
and then up-sampled to one with the same size of H-Face
image. After pooling, histograms for all components are
concatenated into a single feature vector which is then fed
into a SVM classifier.

6. Experiments

In our experiments, we use a simple cascade object de-
tector in Matlab2012 to locate all the components in the H-
Face images. All the H-Face images are resized to a consis-
tent size {96, 72}. We randomly sample 500 feature vectors
for four parts of contour region, 500 for four parts of facial
region, and 300 for other components. The size of code-
book is set to be 512. For classification, we use LibSVM
library [4] to derive the authentication results.

We compare the recognition performance with the DoG
baseline [25], and the state-of-the-art method based on
MsLBP [16]. We perform the DoG baseline method and
MsLBP-based method on both protocol size and the opti-
mal size determined in this paper. For simplicity, we define
some notations for tables. ”DoG, Face” and ”DoG, H-Face”
are denoted by ’1’ and ’2’, respectively. Similarly, ”MsLBP,
Face” and ”MsLBP, H-Face” are denoted by 3 and 4, respec-
tively. The proposed method is denoted by ’5’. Moreover,
We also conduct the proposed method with holistic coding
for a single image to show the efficiency of component de-
pendent coding for each database.



6.1. Results on NUAA Database

As shown in Fig. 4, the discriminant ability of H-Face
images is much better than the images of original size
using both DoG features and MsLBP features. These
trends are identical to those in section 4. After exploiting
the component-based coding method, we further improve
the recognition performance. The numerical statistics are
shown in Table. 1. We can also see that the weighted pool-
ing improves the performance much.
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Figure 4. ROC curves of different methods for NUAA database.

Table 1. Performance comparison for NUAA database.
Metric 1 2 3 4 5

Accuracy 0.746 0.818 0.749 0.927 0.977
AUC 0.717 0.830 0.873 0.990 0.998
EER 0.359 0.233 0.239 0.048 0.019

6.2. Results on PRINT-ATTACK Database

According to the protocol of PRINT-ATTACK database,
we perform three experiments with different fake subsets:
i) G+F, ”fixed” sub-database; ii) G+F, ”hand” sub-database
and iii) G+F+H, both of them. The experimental results are
also compared with the DoG baseline method and MsLBP-
based method. As shown in Table 2, the proposed method
outperforms all the others in all three experiments. As we
can see in Fig. 6, though there is no explicit facial structure
in the Fisher ratio map, the introduction of weighted pooling
still boosts the recognition ability.

Table 2. Performance on PRINT-ATTACK database.
Scenario Metric 1 2 3 4 5

G+F
Accuracy 0.819 0.844 0.918 0.971 0.995

AUC 0.978 0.990 0.980 0.988 1.000
EER 0.068 0.055 0.068 0.026 0.003

G+H
Accuracy 0.852 0.884 0.898 0.958 0.991

AUC 0.957 0.977 0.987 0.996 1.000
EER 0.127 0.097 0.066 0.035 0.009

G+F+H
Accuracy 0.847 0.900 0.885 0.962 0.988

AUC 0.967 0.983 0.991 0.994 0.999
EER 0.096 0.073 0.049 0.038 0.012

6.3. Results on CASIA Database

In the CASIA database, we test seven scenarios accord-
ing to the protocol, including Low Quality (LQ), Moder-
ate Quality (MQ), High Quality (HQ), Warped Photo (WP),
Cut Photo(CP), Video Photo (VP)and the Overall test. The
ROC curve of Overall test is shown in Fig. 5. Meanwhile,
we present the corresponding accuracy, AUC and EER for
all the test scenarios in Table. 3. The results indicates that
the proposed method also outperforms the other methods in
all the test scenarios.

Table 3. Performances on CASIA databases.
Scenario Metric 1 2 3 4 5

LQ
Accuracy 0.853 0.884 0.887 0.926 0.987

AUC 0.892 0.935 0.937 0.977 0.999
EER 0.172 0.129 0.155 0.086 0.015

MQ
Accuracy 0.850 0.905 0.890 0.914 0.943

AUC 0.829 0.926 0.941 0.972 0.987
EER 0.245 0.153 0.120 0.085 0.050

HQ
Accuracy 0.774 0.854 0.863 0.907 0.931

AUC 0.720 0.811 0.913 0.928 0.996
EER 0.323 0.267 0.163 0.137 0.028

WP
Accuracy 0.732 0.810 0.786 0.859 0.930

AUC 0.778 0.904 0.865 0.941 0.970
EER 0.286 0.167 0.206 0.136 0.064

CP
Accuracy 0.780 0.845 0.821 0.882 0.953

AUC 0.853 0.930 0.903 0.956 0.988
EER 0.228 0.147 0.176 0.121 0.047

VP
Accuracy 0.686 0.800 0.861 0.952 0.997

AUC 0.746 0.875 0.938 0.990 1.000
EER 0.311 0.198 0.139 0.047 0.003

Overall
Accuracy 0.760 0.802 0.823 0.851 0.898

AUC 0.754 0.801 0.884 0.915 0.941
EER 0.306 0.267 0.185 0.157 0.118
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Figure 5. ROC curves for Overall test scenario on CASIA
database.

As shown in above table, the performance on low qual-
ity samples is better than that on higher quality samples.
This inspires us that the performance of liveness detection
is determined by the differences between genuine faces and
fake faces, instead of the quality of samples themselves. We
predict that the performance can be further improved by in-
creasing the size of codebook (In our paper, the size is set
to be 512 considering the computational burden on millions
of training vectors).
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Figure 6. ROC curves for PRINT-ATTACK database. From left to right, the test scenarios are: G+F, G+H, G+F+H.

7. Conclusion
We have introduced a component-based coding frame-

work for face liveness detection. We validated our recog-
nition performance on three databases. In these databases,
various spoofing types render big challenges to the previous
approaches. However, by introducing H-Face, the most in-
formative regions are retained. Meanwhile, we use Fisher
criterion analysis to guide pooling procedure, which avoids
interferences among regions of various discriminant abili-
ties. As a result, the proposed method achieve better perfor-
mance for all the databases.
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