
Real-time High Performance Deformable Model for Face Detection in the Wild

Junjie Yan Xucong Zhang Zhen Lei Stan Z. Li∗

Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences, China

{jjyan,xczhang,zlei,szli}@nlpr.ia.ac.cn

Abstract

We present an effective deformable part model for face
detection in the wild. Compared with previous systems on
face detection, there are mainly three contributions. The
first is an efficient method for calculating histogram of ori-
ented gradients by pre-calculated lookup tables, which only
has read and write memory operations and the feature pyra-
mid can be calculated in real-time. The second is a Sparse
Constrained Latent Bilinear Model to simultaneously learn
the discriminative deformable part model, and reduce the
feature dimension by sparse transformations for efficient in-
ference. The third contribution is a deformable part based
cascade, where every stage is a deformable part in the dis-
criminatively learned model. By integrating the three tech-
niques, we demonstrate noticeable improvements over pre-
vious state-of-the-art on FDDB with real-time speed, un-
der widely comparisons with both academic and commer-
cial detectors.

1. Introduction

Face detection is a foundation stone in face based appli-
cations and is one of the most important problems in bio-
metric. Frontal face detection systems have been proposed
in early years, such as [10, 12, 16, 19, 22]. Among these
methods, the framework proposed by Viola and Jones (V-
J) [22] is the most popular one for its advantage in speed,
and holds the dominant position in face detection during the
recent decade. The V-J detector and its subsequences have
achieved great successes. However, their performances are
far from satisfactory (e.g. on FDDB benchmark [8]), due to
the large appearance variations caused by the unconstrained
illumination, occlusion, expression and so on.

Although be different in feature representation and learn-
ing algorithm, previous face detectors tend to feed a fixed
feature representation to a fixed classifier. It would result in
the ambiguousness in practice where the large appearance
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variations can exist. For example, the relative positions of
two eyes for different individuals, and the pose and expres-
sion variations for the same individual. Instead of taking
these appearance variations as blacking boxes, we conduct
the deformable part based structural model originally pro-
posed in [2], where every part can have deformation to cap-
ture the real world face variations. Considering the efficien-
cy, we make the following three contributions.

The first is an efficient method to compute histogram of
oriented gradients (HOG) [1]. HOG is utilized for the ad-
vantage in tolerating local geometric and photometric trans-
formation for faces in the wild. However, the original HOG
feature is with high computation cost, mainly due to the
division and inverse trigonometric operations in calculating
the orientation partition. In this paper, we propose a method
to avoid the complex operations with pre-calculated lookup
tables, where only read and write memory operations are
involved. Our HOG feature pyramid can be calculated in
about 20ms on a standard PC for VGA image, thus can be
ready for real-time applications.

The second is a sparse constrained latent bilinear mod-
el for discriminative parameter learning. In the detection
phase, the most time consuming operation is the convolu-
tion between the HOG feature and the learned template. To
reduce the computation cost while keep the discrimination,
we propose to learn a sparse transformation to project the o-
riginal feature to a low dimensional subspace, in which the
convolution is conducted. The sparse constrain of transfor-
mation is to reduce the computation cost in projection. Par-
ticularly, the transformation is defined on the cells of HOG
feature. We present a novel sparse constrained latent bilin-
ear algorithm to optimize the sparse transformation and the
classifier simultaneously.

The third is a deformable part based cascade in detec-
tion. We use the root template as the first stage of the cas-
cade, and the consequent stages are set to be the learned
deformable parts. To achieve occlusion invariance in any
face region, the score of every part stage is the score of the
deformable parts in current stage plus its parent stage. We
propose a greedy strategy to convert the learned detector to



be the cascade structure. When the score of a stage does
not satisfied a learned threshold, the candidate is rejected
immediately. With the cascade structure, our detector keep-
s the advantage of model flexibility, while avoids a lot of
unnecessary computation.

By conducting the DPM to face detection and integrat-
ing the three techniques above, we dramatically improve
the face detection performance with the real-time speed, ac-
cording to the experimental comparisons on FDDB [8]. Our
method achieves 85.5% detection rate at 0.5 false-positive-
per-image, while the previous best published result [13] is
72.4% and the best commercial system is 83.2%.

The rest of the paper is organized as follows. In section
2, we review the related work. The feature, classifier, and
cascade are discussed in Section 3, 4, 5, respectively. The
experimental comparisons are discussed in section 6, and
finally in section 7, we conclude the paper.

2. Related Work
The deformable part based representation is related to

recent proposed object detection and pose estimation sys-
tems, including [2, 4, 25, 24, 3]. But these models are not
suitable for face based applications for the high computa-
tion cost. To save the computation cost while still enjoy
the flexibility, we propose a sparse bilinear model to jointly
learn a sparse transformations, and a classifier in the com-
pact subspace. The bilinear model is motivated by [18, 17],
but we constrain the sparsity, which results in quite different
formulation and optimization.

Part based face representation has been explored in early
years [15, 5, 20]. But how to effectively use these models
in real world face detection is still unclear. The most related
recent work is [26, 23], which used local parts around land-
marks to represent face, and proposed a tree structure de-
formable model for joint face detection, landmark location
and pose estimation with promising performance. Besides
the differences in model learning and cascade based detec-
tion, our model have three advantages over [26]. Firstly,
[26] needs landmark annotations, while our model can be
automatically learned from coarse bounding boxes annota-
tions. Secondly, our method performs much better than [26]
on face detection experiments. Finally, our method runs at
real-time, while [26] takes about 10s for an image.

3. Feature
The mainstream face detectors always utilized the sim-

ple features (e.g. Wavelet, Haar, LBP) with nonlinear clas-
sifiers (e.g. boosting, kernel SVM). Differently, we explore
the advantages of complex feature in face detection, such
as gradient of oriented histograms (HOG) for the follow-
ing reasons. Firstly, it’s robust in capturing local geometric
and photometric transformations, which is very important

for face detection in the wild, where possible large appear-
ance variations exist. Secondly, it’s of low dimension (e.g.
some thousands dimension for a face), for which the ma-
chine learning technique is very mature. Finally, the his-
togram feature itself provides high nonlinearity, and we can
use simple linear classifiers in model learning. However,
HOG is often with high computation cost. We first review
the standard HOG computation procedure, and then show
how to speed it up.

The standard procedure of calculating HOG pyramid is
described as follows. Given an input image I , we resize
it into different scales to build an image pyramid. For
each scale, we compute the gradient in (x, y) as (dx, dy)
with the convolution kernel [-1 0 1] and its transpose.
Then the orientation of gradient at each pixel is calculat-
ed and discretized into different partitions. As discussed
in [1], the discretization can be divided into contrast sen-
sitive and insensitive, where the orientation range belongs
to [−180◦, 180◦] and [0◦, 180◦], respectively. If the orien-
tation of gradient at the pixel belongs to the i-th partition,
its magnitude is added to the corresponding bin of the his-
togram in the cell. In our experiment, we set the number of
contrast sensitive bins to be 18, and the number of contrast
insensitive bins to be 9. The 4 different types of energy as
defined in [1] is also added to reflect the energy of the cel-
l. Finally, the contrast sensitive and insensitive features are
normalized by the energy.

The gradient computation step only involves sum oper-
ations, which are very efficient. With a detailed analysis
of the standard HOG implementation, we found that most
of the time are spent on calculating the orientation and the
“bilinear” interpolation, where division and inverse trigono-
metric operations involved.

Fortunately, we find that these complex operations can
be avoided for nearly free under the assumption that the im-
age gray value is integral number and ranges in [0, 255].
Note that this assumption can always hold, and the images
of other types can be normalized easily. Since x and y are in
[0, 255], the range of dx, dy are [−255, 255]. We build two
511× 511 matrices L1 and L2, where L1(i, j) and L2(i, j)
store the partition index of contrast sensitive and insensitive
discretization when the dx = i − 255 and dy = j − 255.
The L1 and L2 can be computed in the model initialization
phase or stored in advance, thus take no time in the runtime.
With the help of L1 and L2, for each pixel (x, y) and its gra-
dients (dx, dy), the orientation discretization index can be
got immediately by lookup L1(dx + 255, dy + 255) and
L2(dx + 255, dy + 255), which is very efficient compared
with the complex division and inverse trigonometric opera-
tions. Similar idea can also be used in computing the weight
of “bilinear” interpolation in soft aggregation.

To detect faces in multiple scales, we need to build a
feature pyramid, which includes image resizing operations.



Although thought to be complex, it can be very efficient
with the optimized code on modern hardware. We set the
number of intervals between two octaves as 5, and the cor-
responding pyramid has 23 scales for VGA image. In this
configurations, the total computation time for HOG pyra-
mid construction is about 20ms.

4. Classifier
The deformable part based model (DPM) is originally

proposed in [2] for general object detection. In this paper,
we conduct it to represent face, and propose novel method
for model learning. The detail of the model in representa-
tion is referred to [2] for the space limitation here.

4.1. Sparse Constrained Bilinear Learning
The model defined in DPM is of the linear form, so that

can be learned by mature linear classifiers. Since the an-
notations of part locations are often not available, they are
taken as latent variable in the training phase, and optimized
by the following objective function:

arg min
w

1

2
‖w‖2 + C

∑
n

max(0, 1− ynwTφ(In,Θ
∗
n)) (1)

s.t. Θ∗ = arg max
Θn

wTφ(In,Θn)

where the first term is used for regularization, and the sec-
ond term is the Hinge loss. φ(In,Θ

∗
n) is the feature vector

of the image In with the face configuration Θ∗
n, by con-

catenating the global appearance feature, part appearance
feature and the deformation feature. w is the concatenation
of global template, part templates, and part deformation pa-
rameters with the same order. The configuration parameters
Θ∗ are taken as latent variable, and inferred in the runtime
by maximizing wTφ(In,Θ

∗
n) on all the possible deforma-

tions. yn is 1 for positive samples, and −1 for negative
samples. The Eq. 1 can be solved with the Latent-SVM
algorithm proposed in [2], where a coordinate descent pro-
cedure is conducted to iteratively optimize the latent part
deformation parameters Θ∗

n, and the model parameters w.
To simplify the notation, we use the an equivalent matrix

based notation of Eq. 1:

arg min
Wa,ws

1

2
‖Wa‖F +

1

2
‖ws‖2 (2)

+C
∑
n

max[0, 1− yn(Tr(WT
a Φa(In,Θ

∗
n) + wT

s φs(Θ
∗
n)))]

where Φa(In,Θ
∗
n) is a nf × nc dimensional feature matrix

generated by concatenating the appearance feature of root
and each part. Every column of Φa(In,Θ

∗
n) is a nf dimen-

sional HOG feature vector of a cell, and nc is the number of
cells in root and parts. Wa is a nf ×nc dimensional feature
matrix generated with the same way as Φa(In,Θ

∗
n). ws is a

vector generated by concatenating all the spatial terms wsi .

Tr(·) is the trace operation. ‖ · ‖F is the Frobenius norm,
and ‖Wa‖F = Tr(WT

a Wa). The Eq. 2 equals to Eq. 1,
but it can give some insights of the learning, which will be
explored below.

The dimension of appearance feature determines the ef-
ficiency in the detection phase. What’s more, different di-
mensions in the feature φa(In,Θn) may have the redun-
dance. For the two reasons, we propose a bilinear model
to learn a compact subspace of the original feature space,
where the convolution is conducted, so that the computa-
tion cost in detection can be reduced, and the redundance
can be avoided. To this end, the learning algorithm is di-
vided into learning the two parts jointly, the transformation
matrix to project the original feature to a compact subspace,
and the classifier on the learned subspace. Particularly for
our problem, the transformation matrix is defined on the nf
dimensional feature of cell in HOG. Here we use a bilin-
ear formulation to solve the chicken and egg problem. Note
that the number of convolution operations is reduced with
the cost of projection operations. In order to reduce the cost
in projection, we also add a sparse regularization to prefer
the sparse transformation matrix, where the zero items can
be avoided in the projection. The object function of our
proposed sparse constrained latent bilinear model is defined
as:

arg min
Wa,ws,P

1

2
‖PTWa‖F +

1

2
‖ws‖2 + ‖V ec(P )‖1 (3)

+C
∑
n

max
Θ∗

n

[0, 1− yn(Tr(WT
a PΦa(In,Θ

∗
n) + wT

s φs(Θ
∗
n)))]

where V ec(·) is the operator to reshape a matrix to be a vec-
tor. P is a nf × nd dimensional transformation matrix, and
the ‖V ec(P )‖1 is used as a relaxation of l0 norm. Note that
here we constrain that nd < nf . It projects the original high
feature space to a low dimensional space, and then applys
the convolution. Consequently, the regularization is con-
ducted on PTW globally. To solve the non-convex problem
with latent variable, we divide it into the following subprob-
lems, and solve them iteratively.

4.1.1 Fix P to solve Wa and ws

When the transformation matrix P is fixed, the regulariza-
tion term ‖V ec(p)‖1 in Eq. 3 can be removed. By denot-
ing PPT as A, A

1
2Wa as W̃a, and A− 1

2PΦa(In, L
∗
n) as

Φ̃a(In, L
∗
n). It can be shown that object function can be

reformulated as:

arg min
W̃a,ws

1

2
‖W̃a‖2F +

1

2
wT

s ws (4)

+C
∑
n

max[0, 1− yn(Tr(W̃a

T
Φ̃a(In, L

∗
n)) + wT

s φs(L
∗
n))]



which has the same form with the optimization problem
in Eq. 2, and the Latent-SVM solver can be used here.
Note that the dimension of W̃a is nd × nc, which is small-
er than than original nf × nc dimensional classifier Wa.
Once the solution to Eq. 4 is achieved, Wa is computed by
(PPT )−

1
2 W̃a.

4.1.2 Fix Wa and ws to solve P

When the Wa and ws are fixed, we iteratively relax the F
norm of PTWa and the l1 norm of P , while keeps the de-
tection loss the same, which results in the following two
subproblems.

Relax the F Norm. When the term 1
2‖P

TWa‖F is ig-
nored, the problem becomes to be:

arg min
P
‖V ec(P )‖1 (5)

+C
∑
n

max
Θ∗

n

[0, 1− yn(Tr(WT
a PΦa(In,Θ

∗
n) + wT

s φs(Θ
∗
n)))]

which can be transformed to be standard linear program-
ming problem, and solved by efficient simplex method.

Relax the l1 Norm. When the term ‖V ec(P )‖1 is ig-
nored, and Wa and ws are fixed, we first inference the part
location of every training samples Θ∗

n by finding the part
configurations to maximize Eq. 3. Denoting WaW

T
a as A,

A
1
2P as P̃ , and A− 1

2WaΦa(In,Θ
∗
n)T as Φ̃a(Inn

,Θ∗
n), the

object function equals to:

arg min
P̃

1

2
‖P̃‖2F (6)

+C
∑
n

max[0, 1− yn(Tr(P̃T Φ̃a(In,Θ
∗
n)) + wT

s φs(Θ
∗
n))]

The only difference between Eq. 6 and standard SVM is an
additional term wT

s φs(Θ
∗
n). Since wT

s φs(Θ
∗
n) is a constant

in the optimization, it can be taken as an additional dimen-
sion of V ec(Φ̃a(In,Θ

∗
n)). In this way, the Eq. 6 can be

solved by the standard SVM solver. After we get P̃ , the P
can then be computed by (WaW

T
a )−

1
2 P̃ .

In our implementation, we calculate the PCA of HOG
features extracted from randomly generated patches, and
the first nd eigenvectors are combined as the initial value
of P . After that, we iteratively fix P to optimize Wa and
ws, and fix Wa and ws to optimize P . In optimizing P , we
further iteratively relax the l1 and F norm to wrap the prob-
lem to be standard SVM and linear programming problem.
Once we get the optimized P , Wa and ws, we can project
the original HOG feature to be a low dimensional compact
subspace, and conduct the convolution with the learned Wa

on it, so that a lot of computations are avoided.

5. Cascade
The learned detector consists of a root template and a

set of part templates. Although we have learned a compact
subspace to reduce the computation cost, it still can not run
in real-time on standard PC, mainly due to the calculation
of the appearance scores for all parts. Here we present a
method to convert the learned non-cascade model to be a
part based cascade, which finally makes our detector real-
time.

The detector is applied to all the possible candidate face
regions in the detection procedure. For a candidate region b
in image I , we use the following additive cascade structure:

Sn(Ib) = Sn−1(Ib) + Fn(Ib) (7)

where Fn(Ib) is the response in the n-th stage, and Sn(Ib)
is the detection score. There is a threshold tn in every stage.
If Sn(Ib) > tn, the candidate is passed to the next stage for
further consideration, otherwise is taken as negative sam-
ple and rejected immediately. Every stage is set to be a
deformable part, includes both the appearance score and s-
patial score. With the cascade structure, the detector only
pays attention to promising regions and the overwhelming
majority of negative samples can be rejected in early stages.
Then the problem becomes to be how to convert the learned
non-cascade model to be a cascade model.

Here we conduct a greedy algorithm to select the order
of the parts in the cascade. Motivated by [3], we use the
learned model to detect the positive and negative samples,
and cache the appearance score and spatial score of each
part and root. To achieve occlusion invariance, the first
stage is set to be the root template. Since the score of the
root can be passed to the sequent stages, the effects of oc-
clusion in a special part can be avoid naturally. For each
consequent stage, we greedily select a part with the proce-
dure described in Algorithm 1.

A candidate part list is kept in Algorithm 1. At each
loop, we greedily select a part that rejects most of negative
samples with the pre-defined true positive rate. Once the
part is selected, we pop it from the candidate list, and select
its succeed parts from the remaining candidate part set.

6. Experiments
In this part, we show the details in training the proposed

face detection model, and compare our method with other
state-of-the-art methods on challenging FDDB [8].

6.1. Practical Training

Our face model is trained on a subset of AFLW database
[11], which is a newly released database collected from
Flickr. For the unconstrained nature of Flickr, the images
exhibit large variations in pose, illumination, expression,
ethnicity, and imaging conditions. There are 25933 faces in



1 Cache the detection score of root template and
parts for training positive and negative samples;

2 Select the root template as the 0-th stage, and push
the part set into the candidate list;

3 for i← 1 to N do
4 for j ← 1 to N − i do
5 Calculate Si for positive and negative

samples if the j-th part in the candidate list
is taken as the i-th stage model;

6 Set the threshold to satisfy that the true
positive rate is ρi, and calculate the
corresponding false positive rate;

7 end
8 Select the part with the lowest false positive

rate to be the ith stage model, and pop it from
the candidate list;

9 end
Algorithm 1: The greedy algorithm to convert the
model to be a cascade.

21997 images. Besides the face bounding boxes, the 21 key-
point annotations are also provided, thus the 3D face pose
can be estimated.

Our face model consists of eight different views:
[−90◦,−60),[−60◦,−30◦),[−30◦,−15◦),[−15◦, 0),[0◦, 15◦),
[15◦, 30◦), [30◦, 60◦),[60◦, 90◦], according to the yaw an-
gle. We select 2092 faces for the [0◦, 15◦) model, 2104
faces for the [15◦, 30◦) model, 2104 faces for the [30◦, 60◦)
model, and 2224 faces for the [60◦, 90◦] model. The
learned model of each face view consists of a global
template with 9 × 9 HOG cells, and eight part templates
with 6 × 6 HOG cells. The cell size of HOG is set to be
8 × 8 pixel. To suppress the repetitive detections, we use
NMS (Non Maximum Suppression) [1] as a post-process
step, and the overlap threshold is set to be 0.5. The initial
true positive rate ρ in cascade learning is set to be 0.999.

6.2. Experiment on FDDB

FDDB [8] is one of the most widely used benchmark
for face detection in unconstrained setting. It contains 2845
images and 5171 faces collected from the news photograph.
Following the standard protocol in [8], we report the aver-
age discrete and continuous ROC of the ten subfolders.

We compare our result with the top 6 academic method-
s, and 2 commercial systems listed on the FDDB webpage,
including: (1) Olaworks face detector1, which is a commer-
cial system, and achieved previous best result on FDDB; (2)
IlluxTech2 frontal face detector, which is another commer-
cial system; (3) SURF cascade face detector [13], which is

1http://eng.olaworks.com/olaworks/main/
2http://illuxtech.com

based on SURF feature and a modified boosting algorithm;
(4) Jain’s face detector [9], where the image context is used
to improve boosting based algorithm; (5) OpenCV V-J face
detector 3, which is one of the most popular open source
face detector; (6) Subburaman’s face detector [21], which
improves V-J detector in sliding window phase; (7) Miko-
lajczyk’s face detector [14], which used additional body in-
formation. (8) Tree structure face model (TSM) [26]. Note
that all the results except OpenCV are reported by their au-
thors thus can guarantee the best parameters used. For TSM
and our detector, we resize the original image two times.

The ROC curves and some of the detection examples are
shown in Fig. 1. Our proposed method can achieve 85.5%
true positive rate with 142 false positives (there are 284
faces in average for each subfolder in FDDB, so that this
corresponding to 0.5FPPI). The best commercial system O-
laworks face detector gets 83.2% true positive rate and the
best academic system TSM [26] can only get 72.4% true
positive at the same FPPI.

6.3. Discussion

Here we compare the proposed detector with the domi-
nant V-J detector and recently proposed tree structure model
[26] for face detection in the following three aspects.

Effectiveness From the experimental comparisons on
challenging FDDB, we can find that our model achieves a
large performance margin over published V-J based meth-
ods and tree structure method for unconstrained face detec-
tion.

Training Samples Traditional V-J based methods often
need millions of faces or more to get the desired perfor-
mance, which makes data collection a difficult problem.
Benefiting from the low dimensional histogram feature and
the generalization of bilinear model, the proposed method
can achieve good performance by thousands of training in-
stances. Recently proposed tree structured model [26] are
with the same property, but additional landmark annotations
are needed.

Efficiency The V-J detector is very efficient for real ap-
plications. The tree structure model [26] can get better
accuracy but with high computation cost (0.025-0.1FPS).
Benefiting from the methods discussed above, our eight
view face detector runs about 10 FPS and frontal face de-
tector runs about 22 FPS on a PC laptop with Intel Core i5
CPU for VGA image. Considering the large performance
improvement and the coming better hardware, we believe
that our method would be more competitive.

7. Conclusion
In this paper, an effective deformable part model is built

for unconstrained face detection. We argue the advantages

3http://sourceforge.net/projects/opencvlibrary/
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Figure 1. Quantitative and qualitative results on FDDB.

of gradient histogram feature in face detection and propose
a method to compute it efficiently. Furthermore, We de-
velop a sparse constrained latent bilinear model for jointly
learning the model parameters and reducing the model di-
mension. Finally, we show how to convert the learned mod-
el to be a occlusion invariant deformable part based cascade
for further speedup. State-of-the-art detection performance
is achieved on FDDB, compared with both academic and
commercial systems.
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