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Abstract—LBP is an effective descriptor for face recognition.
LBP encodes the ordinal relationship between the neighborhood
samplings and the central one to obtain robust face representa-
tion. However, additional information like the difference among
neighboring pixels, which may be helpful for face recognition,
is ignored. On the other hand, gradient information which
enhances the edge response and suppresses the external noise
like illumination variation, is usually useful for face recognition.
In this paper, we propose a novel face descriptor, namely local
gradient order pattern (LGOP), taking into account the ordinal
relationship of gradient responses in local region to obtain robust
face representation. After pattern encoding, a 2-D histogram is
consequently adopted to calculate the occurrence frequency of d-
ifferent patterns and multi-scale histogram features are extracted
to represent the face image. We further adopt whitened principal
component analysis (WPCA) to reduce the feature dimensionality
and improve the computational efficiency. Extensive experiments
on FERET, CAS-PEAL and LFW validates the effectiveness of
LGOP for both constrained and unconstrained face recognition
problems.

I. INTRODUCTION

Face recognition has been widely deployed in real appli-
cations [13], such as access control, face tagging in social
network, and human-machine interaction etc. With the devel-
opment of face recognition in last decades, face recognition
under controlled scenarios has been well solved. However, its
performance in unconstrained environment is still a great chal-
lenge. The large expression, illumination, occlusion and pose
variations are still critical issues affecting the face recognition
performance.

To address the face appearance variation problem, one
possible and straightforward way is to extract face repre-
sentation robust to these variations. Actually, how to extract
effective face representation is always a critical problem in face
recognition field. In early years of face recognition study, the
face image pixels are firstly vectorized and the dimensionality
reduction methods are then applied to the high-dimensional
space to find an effective essential subspace to discriminate
face images. These methods are usually called holistic features,
in which principal component analysis (PCA) [24], linear dis-
criminant analysis (LDA) [2] based subspace learning methods
are representative works.

Later, researchers find that the holistic methods are sen-
sitive to local variations such as expression, lighting and
occlusion because of its holistic characteristic. Therefore, a
number of local features which describe the local texture

variations rather than the entire face attract more attention.
Gabor [17], [11], LBP [1], LGBP [32], TPLBP, FPLBP [28],
POEM [26], LPQ [25] etc. are all popular local descriptors,
which achieve great success in face recognition field.

Recently, the attribute based face representation have been
also proposed to address unconstrained face recognition prob-
lem. In [10], a number of attribute and simile classifiers are
constructed to realize a semantic face representation. In [3],
Tom and Pete (SVM) classifiers are trained to extract sufficient
discriminative features, each of which is learned to differentiate
person pairs independently. These learned attribute based face
representations are discriminative and robust to face variations
and achieve state-of-the-art performance on challenging LFW
database [9].

In this paper, we propose a simple yet effective face
representation for face recognition. As we know, LBP models
the ordinal information between the central point and its neigh-
bors. However, the ordinal relationship among neighboring
pixels are ignored. We find that the ordinal information among
these neighboring pixels is also useful for face recognition. In
fact, the local intensity order pattern (LIOP) [27] has been
proposed and achieved good performance in object recogni-
tion, indicating the effectiveness of the ordinal information
among neighboring pixels. On the other hand, the gradient
information is robust to face recognition. It enhances the useful
information like edge texture and meanwhile suppresses the
external noise effect like illumination variation. Therefore,
in this work, we incorporate the advantage of the ordinal
information of neighboring pixels and the gradient response
and propose a novel face descriptor, namely local gradient
order pattern (LGBP). For each face image, two gradient
response images are firstly generated by computing gradient
responses along horizontal and vertical directions. Secondly,
the neighboring pixels are sampled from these two response
images, respectively. The LGOP is finally encoded according
to the order of the sampled pixel values from the two gradient
response images. We evaluate the proposed LGOP on three
face databases, including constrained and unconstrained set-
tings and indicate that LGOP is an effective and competitive
face descriptor for robust face representation and recognition.

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews local intensity order pattern. Section III
details the local gradient order pattern and its extraction
process. Section IV introduces the two metrics used in this
work. Experiments on FERET, CAS-PEAL-R1 and LFW face
databases are illustrated in Section VI and in Section VII, we



conclude the paper.

II. LOCAL INTENSITY ORDER PATTERN

Local intensity order pattern (LIOP) [27] takes into account
the order of values of elements in data vector and maps the
data vector to its permutation space (also namely LIOP code
space). Given a d-dimensional vector P = [p1, p2, · · · , pd] ∈
Rd and a possible permutation set Π of integers {1, 2, · · · , d},
the mapping from P to Π is defined as follows. Firstly, we sort
the elements in P in a non-descending order. That is, pi1 ≤
pi2 ≤ · · · ≤ pid . Secondly, the subscript list i1, i2, · · · , id is
considered as the mapping result in set Π and is denoted using
a unique scalar (LIOP code). To avoid ambiguity, ps ≤ pt is
defined as if and only if (1) ps < pt or (2) ps = pt and
s < t. It is obvious that for a d-dimensional vector, there are
d! possible permutations. Fig. 1 illustrates an example of LIOP
encoding.

Fig. 1. The LIOP encoding process.

III. LOCAL GRADIENT ORDER PATTERN

Gradient information has been shown to be important
and effective to represent objects. Popular descriptors like
SIFT [18] and HOG [6] extract local gradient information to
describe the texture of objects robustly. Different from LIOP,
in this work, we propose to exploit the ordinal relationship of
gradient response rather than image intensity, so that more
discriminative and robust representation could be achieved.
In particular, two 1st-order gradient responses (horizontal and
vertical) are considered and a novel local gradient order pattern
(LGOP) is proposed to describe face images. Fig. 2 shows the
process of LGOP extraction.

Fig. 2. The LGOP pair encoding process.

Given a face image, the horizontal and vertical gradient
responses are firstly computed. After that, for each pixel, its
neighbors are sampled and sorted in non-descending order.
The order index is then mapped to its permutation space as
in LIOP to form the LGOP codes. Finally, the LGOP codes

generated from horizontal and vertical gradient responses are
combined to form the LGOP pair. As shown in Fig. 2,
in which four neighborhood samplings are considered, the
original values of four samples from two gradient response
images are (75, 63, 12, 78) and (25, 5, 53, 125). After sorting
in non-descending order, their order indices are (3,2,1,4) and
(2,1,3,4), respectively. The LGOP pair is finally encoded as
(23,12) because (3,2,1,4) and (2,1,3,4) are the 23th and 12th
vectors in permutation set.

A. Block based Analysis

In this work, we adopted block based LGOP computation.
As adopted in [16], for each neighborhood sampling, the mean
value of local block centered at the point is used instead of
the single pixel value. In this way, the resulted LGOP is more
stable and hence is more robust to noise effect. Fig. 3 shows an
example of block based pattern comparison. The scale of block
size S is a parameter that can be adjusted in implementation.

Fig. 3. The example of block based LGOP analysis.

B. Multi-scale Two dimensional Histogram Feature

To preserve the spatial information in face image, we
extract a number of two-dimensional histogram features that
describe the occurrence frequency of LGOP pairs in local
regions. For each local histogram extraction, we divide the
local region (cell) into 4 blocks and extract the histogram
feature from these 4 blocks and the whole cell, respectively.
These 5 histogram based features are then concatenated. Fig. 4
shows the histogram extraction process. In this way, histogram
features at multi-scales are extracted, which are expected
to be complementary to enhance the representative ability
of face images. These two-dimensional histogram features
extracted from different local regions are finally concatenated
to represent the whole face. The size of local region R is
another parameter needs be determined in our algorithm.

Fig. 4. The multi-scale histogram feature extraction process.

C. Neighborhood sampling method

Considering the computational cost, four neighbors are
sampled in LGOP encoding. To exploit more discriminative
and complementary information, we adopt two different sam-
pling methods (shown in Fig. 5) and fuse the recognition
results at the score level.



Fig. 5. Two neighborhood sampling ways used in LGOP. In each way, four
neighbors (the blue blocks) around the central one are sampled and compared.

IV. DISSIMILARITY MEASURE

After feature extraction, the next step is to measure the
dissimilarity between two feature vectors. One straightforward
way is to use histogram intersection metric to compute the
dissimilarity of the histogram based features. In this work,
we adopt weighted histogram intersection to differentiate the
importance of the different face regions to enhance the face
recognition performance. Given two histogram based features
Ha = [ha

1 , h
a
2 , · · · , ha

d] and Hb = [hb
1, h

b
2, · · · , hb

d], where
d is the number of local patches, the weighted histogram
intersection is defined as
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where h(k) is the k-th bin value of histogram h. The weight
wi is determined using Fisher criterion as in [32], representing
the discriminative ability of different face regions. The distinct
regions for face recognition like eyebrow, eye, nose etc. usually
have higher weights than other regions like mouth and cheek.

The original histogram based feature is usually of high
dimension. Directly comparing different features is not a very
efficient way. Dimensionality reduction is an effective way
to reduce the computational cost and meanwhile improve the
discriminative ability. In many real application, there is only
one face image per person available. Many supervised methods
like LDA cannot be applied directly in this case. In this work,
we adopt the unsupervised whitened PCA [26], which balances
the importance of different feature dimensions by normalizing
the energy of each dimension in the reduced feature space.
After WPCA reduction, the cosine metric (Eq. 2) is adopted
to compute the dissimilarity of two reduced feature vectors.

dcos(x1, x2) =
xT
1 x2√

xT
1 x1xT

2 x2

(2)

In the following experiments, Eq. 1 and Eq. 2 is applied
to features with/without WPCA reduction, respectively.

V. RELATED FACE DESCRIPTORS

Ordinal information is always an important clue for face
recognition. In [15], authors apply multi-pole ordinal filters
to face representation. The ordinal relationship between local
regions are measured. Later, Liao et al. [14] combine several
ordinal measures and propose structured ordinal feature (SOF)
for face representation. SOF integrates the advantage of or-
dinal measure and LBP and achieves robust face recognition
performance in constrained case. Chai et al. [4] propose Gabor
ordinal measures, which extract the ordinal measure on Gabor

responses. By incorporating the robustness of Gabor and ordi-
nal measures, it is robust to variations like expression, lighting,
occlusion etc. However, the computational complexity is also
greatly increased. In these works, the ordinal relationship is
measured by comparing the values of two regions and being
thresholded into binary value. Local salient patterns (LSP) [5]
is the most related work to this paper. In LSP, the ordinal
information among neighborhood samplings are exploited. The
order of the pixels with the maximum and minimum values are
encoded. This work takes into account the order information
among all neighborhood samplings and is expected to achieve
more discriminative face representation.

VI. EXPERIMENTS

We compare LGOP with many existing face descriptors
including LBP, LGBP, LGT, LVP, LQP etc. The performance
of LGOP and LIOP is also compared. Three popular face
databases (FERET, CAS-PEAL-R1, LFW) are used to evaluate
the performance of various methods in both constrained and
unconstrained scenarios.

A. Data Description

The FERET [22] database is one of the largest publicly
available databases. The training set contains 1002 images. In
test phase, there are one gallery set containing 1196 images
from 1196 subjects, and four probe sets (fb, fc, dup I and dup
II) including expression, illumination and aging variations.

The CAS-PEAL-R1 database [8] is a large-scale Chinese
face database, which provides face images with different
variations, including pose, expression, accessory and lighting.
In this experiment, we follow the standard testing protocols.
The gallery set includes 1040 images from 1040 persons. For
probe sets, we use the expression, lighting, accessory subsets,
which contains 1570, 2243, 2285 images, respectively.

Labeled Faces in the Wild (LFW) [9] is a database collected
from the web for studying the problem of unconstrained face
recognition. There are 13, 233 images from 5, 749 different
persons, with large pose, occlusion, expression variations. In
testing phase, researchers are suggested to report performance
as 10-fold cross validation using splits which are randomly
generated and provided by the organizers.

For FERET and CAS-PEAL, all the images are cropped to
150× 130 size according to the provided eye coordinates. For
LFW, we use the aligned images (LFW-a) [29] and crop the
images with the size of 150 × 130 from the original images.
Fig. 6 shows some cropped examples from these three face
databases.

B. Parameter Specification

In this work, we extract the histogram based features from a
evenly distributed local regions in face image. Fig. 7 illustrates
the distribution of centers of local regions over the face image.
There are in total 11× 9 = 99 local regions. For the proposed
LGOP, there are two critical parameters, i.e., the scale of block
size S (shown in Fig. 3) and the size of local region R in
histogram based feature extraction (shown in Fig. 4). In the
following, we examine the effects of these two parameters



(a) FERET

(b) CAS-PEAL-R1

(c) LFW

Fig. 6. Cropped face examples from FERET (a), CAS-PEAL (b) and LFW
(c) databases.

Fig. 7. The distribution of centers of local regions in histogram based feature
extraction.

on face recognition performance following four probe sets on
FERET database.

First, we fix the histogram size R to 21 and examine
the face recognition performance (Fig. 8(a)) with respect to
different block sizes (S = 9, 15, 21, 27) in LGOP encoding.
As expected, small scale is relatively sensitive to noise effect
and large scale may lose some fine information useful for face
recognition. From the results, we can see that the best face
recognition performance is achieved when S is set to 15.

Next, by setting S to 15, Fig 8(b) shows the face recog-
nition performance with different local region sizes R in
histogram feature extraction. The face recognition performance
is relatively stable when R is selected from 21, 23, 25. In the
following experiments, we simply set R to 23.

C. LGOP vs. LIOP

Table I lists the recognition results of LGOP and LIOP on
four probe sets. For fair comparison, both LIOP and LGOP
adopts the same sampling method shown in Fig. 5(a). The
radius of neighborhood sampling and the local region size of
histogram based feature extraction are set the same for LIOP
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Fig. 8. Face recognition performance with respect to different parameters
((a) scale of block size S and (b) the size of local histogram region R).

and LGOP. It is shown that the original LIOP is not able
to represent face images sufficiently. Comparatively, LGOP,
which incorporates the gradient responses and the ordinal
information in neighborhood region can exploit the identity-
preserving features successfully. LGOP outperforms LIOP on
all four probe sets of FERET database.

TABLE I. RECOGNITION RESULTS (%) OF LGOP AND LIOP ON
FERET DATABASE.

Methods fb fc dup I dup II
LIOP [27] 97.0 79.0 66.0 64.0

LGOP 98.0 97.0 74.0 71.0

D. Comparison with state-of-the-art methods

Table II lists the face recognition performance of LGOP
compared with popular face descriptors. The “whole” face
recognition rate is reported by combining all probe images
from four probe sets. With weighted histogram intersection,
LGOP outperforms the classical LBP, LGBP, HGPP etc. in
most cases. It enhances the recently proposed POEM, LQP
by 3.5% and 11.3% in terms of the whole face recognition.
Compared with LSP, LGOP achieves the similar recognition
performance on fb and fc probe sets and improves LSP by
4.3% and 7.3%, respectively on dup I and dup II probe sets. It



indicates that LGOP successfully extracts more discriminative
clues for face recognition. The learning based descriptors like
DT-LBP, DLBP and DFD achieve slightly better recognition
results than LGOP in some cases. It motivates us that it is
possible to incorporate the learning based way to improve
the performance of LGOP in future. With WPCA and cosine
metric, LGOP improves its robustness to face appearance
variations, especially to aging effect. With WPCA, LGOP
outperforms POEM and LQP by 0.4% and 2.4% in terms of
the whole face recognition rate, validating its effectiveness for
face representation and recognition.

TABLE II. COMPARISON RECOGNITION RATE (%) ON FERET
DATABASE.

Methods fb fc dup I dup II whole
LBP [1] 97.0 79.0 66.0 64.0 82.6

LGBP [32] 98.0 97.0 74.0 71.0 87.8
LVP [21] 97.0 70.0 66.0 50.0 80.5
LGT [11] 97.0 90.0 71.0 67.0 85.4

HGPP [31] 97.5 99.5 79.5 77.8 90.1
LLGP [30] 99.0 99.0 80.0 78.0 91.0

DT-LBP [19] 99.0 100.0 84.0 80.0 92.5
DLBP [20] 99.0 99.0 86.0 85.0 93.6
POEM [26] 97.6 95.0 77.6 76.2 89.1
LQP [25] 99.2 69.6 65.8 48.3 81.3
LSP [5] 98.1 99.0 79.2 76.5 90.2

DFD [12] 99.2 98.5 85.0 82.9 93.1
POEM+WPCA [26] 99.6 99.5 88.8 85.0 94.8
LQP+WPCA [25] 99.8 94.3 85.5 78.6 92.8
DFD+WPCA [12] 99.4 100.0 91.8 92.3 96.4

LGOP 98.8 99.0 83.5 83.8 92.6
LGOP+WPCA 99.2 99.5 89.5 88.5 95.2

E. CAS-PEAL-R1

We further examine the robustness of different methods to
expression, accessory and lighting variations on CAS-PEAL-
R1 database. We also report the “whole” face recognition
performance by combining all the probe images. Table III lists
the recognition rates of various methods. From the results, we
can see that the Gabor related descriptors like LGBP, LLGP,
HGPP achieve better performance in the case of lighting vari-
ation. For the expression and accessory variations, the learning
based descriptors (DT-LBP, DLBP, DFD) and proposed LGOP
performs better than others. Overall, with WPCA and cosine
metric, LGOP achieves the highest accuracy in terms of whole
face recognition rate, indicating the superiority of LGOP for
face representation.

TABLE III. COMPARISON RECOGNITION RATE (%) ON
CAS-PEAL-R1 DATABASE.

Methods expression accessory lighting whole
LGBP [32] 95.0 87.0 51.0 75.7
LVP [21] 96.0 86.0 33.0 68.9

HGPP [31] 96.8 92.5 62.9 82.7
LLGP [30] 98.0 92.0 55.0 79.8

DT-LBP [19] 98.0 92.0 41.0 74.6
DLBP [20] 99.0 92.0 41.0 74.8
DFD [12] 99.3 94.4 59.0 82.5

DFD+WPCA [12] 99.0 96.9 63.9 85.2
LGOP 98.7 93.2 47.6 77.7

LGOP+WPCA 99.6 96.8 69.9 87.6

F. Unconstrained Face Recognition

We test on the “View 2” set of LFW, which consists of 10
folds of 300 positive and 300 negative image pairs randomly

selected from the original image set. In this experiment, all
the methods are tested in an unsupervised way. That is,
no class information is used in training phase. The mean
classification with its standard error of the 10-fold cross-
validation is reported.

The LGOP is compared with popular descriptors including
LBP, Gabor, SIFT, LARK, POEM, LQP, DFD etc. Table IV
lists the mean accuracy of different methods on LFW database
and the corresponding ROC curves are illustrated in Fig. 9.
Without whitened PCA, the proposed LGOP achieves higher
recognition accuracy than LBP, Gabor, SIFT, POEM, LQP etc,
indicating the superiority of LGOP over these descriptors. The
LGOP performs slightly worse than hybrid descriptor which
is a combination of LBP, TPLBP, FPLBP and Gabor with two
different metrics. The learning based DFD achieves the best
recognition results in this case. With whitened PCA, the face
recognition performance of LGOP is significantly improved. It
outperforms POEM and DFD by 2.6% and 1.3%, respectively.
Overall, the comparison results show that LGOP is an effective
and competitive descriptor for unconstrained face recognition,
which is very promising in real application.

TABLE IV. MEAN RECOGNITION ACCURACY (%) FOR DIFFERENT
DESCRIPTORS ON LFW DATABASE.

Descriptor Accuracy
LBP [7] 69.45±0.5

Gabor [7] 68.47±0.7
SIFT [7] 64.10±0.6

Hybrid descriptor [28] 78.47±0.5
LARK [23] 72.23±0.5
POEM [26] 75.22±0.7
LQP [25] 75.30±0.8
DFD [12] 80.02±0.5

POEM+WPCA [26] 82.71±0.6
LQP+WPCA [25] 86.20±0.5
DFD+WPCA [12] 84.02±0.4

LGOP 77.03±0.5
LGOP+WPCA 85.38±0.4
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Fig. 9. ROC curves over View 2 on LFW database. The results of
LBP, Gabor, SIFT, LARK and DFD are cited from the website (http://vis-
www.cs.umass.edu/lfw/results.html) directly.



VII. CONCLUSIONS

In this paper, we propose a local gradient order pattern
(LGOP) for face representation and recognition. By incorpo-
rating advantage of gradient responses and ordinal information
in local neighborhood region, a discriminative and robust face
descriptor is derived. Different pattern samplings and multi-
scale histogram feature extraction are adopted to exploit the
useful facial information sufficiently. The whitened PCA is
further adopted to reduce the dimension of LGOP feature and
enhance the discriminative ability. Experiments on constrained
and unconstrained face recognition scenarios indicate that
LGOP is comparable with state-of-the-art descriptors and is
an effective descriptor for real face recognition.
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