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Abstract—Various hand-crafted features and metric learning
methods prevail in the field of person re-identification. Compared
to these methods, this paper proposes a more general way that can
learn a similarity metric from image pixels directly. By using a
‘“siamese” deep neural network, the proposed method can jointly
learn the color feature, texture feature and metric in a unified
framework. The network has a symmetry structure with two
sub-networks which are connected by a cosine layer. Each sub-
network includes two convolutional layers and a full connected
layer. To deal with the big variations of person images, binomial
deviance is used to evaluate the cost between similarities and
labels, which is proved to be robust to outliers. Experiments on
VIPeR illustrate the superior performance of our method and a
cross database experiment also shows its good generalization.

I. INTRODUCTION

The task of person re-identification is to judge whether two
person images belong to the same subject or not. In practical
applications, the two images are usually captured by two
cameras with disjoint views. The performance of person re-
identification is closely related to many other applications, such
as cross camera tracking, behaviour analysis, object retrieval
and so on. The algorithms proposed in this field are also
overlapped with other fields in pattern recognition. In recent
years, the performance of person re-identification has increased
continuously and will increase further.

The essence of person re-identification is very similar
to biometric recognition problems, such as face recognition.
The core of them is to find a good representation and a
good metric to evaluate the similarities between samples.
Compared to biometric problems, person re-identification is
more challenging due to the low quality and high variety
of person images. Person re-identification usually needs to
match the person images captured by surveillance cameras
working in wide-angle mode. Therefore, the resolution of
person images are low (e.g., around 48 x 128 pixels) and the
lighting conditions are unstable too. Furthermore, the direction
of cameras and the pose of persons are arbitrary. These factors
cause the person images under surveillance scenarios have
two distinctive properties: large variations in intra class, and
ambiguities between inter classes.

Since the pixels of person images are unstable, effec-
tive representations are important and needed for person re-
identification. To this end, existing methods borrow many
sophisticated features from other fields, such as HSV his-
togram, Gabor, HOG and so on. Based on the features, direct
matching or discriminative learning are then used to evaluate
the similarity. Existing methods mainly focus on the second
step that is how to learn a metric to discriminate the persons.

Many good metric learning methods have been proposed in
this context, such as KISSME [1], RDC [2] and so on.

The majority of existing methods include two separate
steps: feature extraction and metric learning. The features
always come from two separate sources: color and texture,
some of which are designed by hand, some of which are
learned, and they are finally connected or fused by simple
strategies. On the contrary, this paper proposes a new method
to combine the separate modules together that is learning the
color feature, texture feature and metric in a unified framework,
which is called as “Deep Metric Learning” (DML).

The main idea of DML is inspired by a “siamese” neu-
ral network [3], which is originally proposed for signature
verification. Given two person images x and y, we want to
use a siamese deep neural network to assess their similarity
s = DML(x,y). Different from the original work [3], our
DML does not need the two sub-networks share the same
weights and biases. In this way, each sub-network in DML
can adapt to its corresponding view, which makes DML more
appropriate to person re-identification across views. By using
cosine as the last layer, the similarity equation can be written as
s=DML(x,y) = Cosine(B1(x), B2(y)), where By and Bs
denote the two sub-networks of DML. If we want to construct
a generic (don’t consider view) deep metric, B; and By should
share their parameters.

Compared with existing methods, DML has three advan-
tages:

1) DML can learn a similarity metric from image pixels
directly. All layers in DML are optimized by the same
objective function, which are more effective than the
hand-crafted features in traditional methods.

2)  The multi-channel filters learned in DML can capture
the color and texture information simultaneously,
which are more reasonable than the simple fusion
strategies in traditional methods, e.g., feature concate-
nation and sum rule.

3) The structure of DML is flexible that can easily
switch between view specific and general person re-
identification tasks by whether sharing the parameters
of sub-networks.

DML is tested on the most popular person re-identification
database, VIPeR [4], using the common evaluation protocol.
The results show that DML outperforms most of existing
methods and is on a par with the state-of-the-art [5]. To
evaluate the generalization of DML, we conduct a cross
database experiment, that is training on CUHK Campus [5] and
testing on VIPeR. The results of the cross database experiment



are also better than the newest transfer learning method [6]
under similar experimental setting. To our knowledge, this is
the first strict cross database experiment in the field of per-
son re-identification. For practical applications, cross database
experiment is more significant than traditional experiments.

II. RELATED WORK

This work uses deep learning to learn a metric for person
re-identification. Related works in three aspects are reviewed in
this section: feature representation, metric learning for person
re-identification and siamese convolutional neural network.

Early papers mainly focus on how to construct effective
feature representation. From 2005, numerous features are used
or proposed for person re-identification [7]. The most popular
features include HSV color histogram [8], [5], LAB color
histogram [9], SIFT [9], LBP histogram [5], Gabor features [5]
and their fusion. Among the features, color has the most
contribution to the final results. On the other hand, [8] has
proved that using the silhouette and symmetry structure of
person can improve the performance significantly, therefore the
color and texture features are usually extracted in a predefined
grid or finely localized parts. The recent advances in this aspect
are color invariant signature [10] and salience matching [11].
According to the history of biometrics research, the future
directions of feature representation may be precise body parts
segmentation, person alignment and pose normalization.

Based on the extracted features, naive feature matching
or unsupervised learning methods have got moderate results,
but state-of-the-art are achieved by supervised methods, such
as Boosting [12], Rank SVM [13], PLS [13] and Metric
learning [2], [1], [5]. In these methods, metric learning is the
main stream due to its flexibility. Compared with standard
distance measures, e.g., L1, Lo norm, the learned metric is
more discriminative for the task on hand and more robust to
large variations of person images across view. Most papers
use a holistic metric to evaluate the similarity of two samples,
but [5] first divides the samples into several groups according
to their pose and then learn a metric for each group. By
using the pose information explicitly, [5] obtains the highest
performance.

Early in 1993, a siamese neural network [3] was proposed
to evaluate the similarity of two signature samples. In the same
year, a neural network [14] with similar structure was proposed
for fingerprint verification. Different from traditional neural
networks, the siamese architecture is composed by two sub-
networks sharing the same parameters. Each sub-network is a
convolutional neural network. Then the siamese neural network
was used for face verification [15] by the same research group.
The best property of siamese neural network is its unified and
clear objective function. Guided by the objective function, the
end-to-end neural network can learn an optimal metric towards
the target automatically. The responsibility of the last layer of
the siamese neural network is to evaluate the similarity of the
output of two sub-networks, which can be in any form [15],
such as Ly, Lo norm and cosine. [3] used cosine function
because of its invariance to the magnitude of samples. Because
of the good property of cosine function and it has been used
widely in many pattern recognition problems [16], we choose
it as the last layer of DML.

Although good experimental results have been obtained
in [3], [14] and [15], their disadvantages are lacking imple-
mentation details and lacking comparison with other methods.
This paper will remove the parameter sharing constraint of
the siamese neural network and apply it in the person re-
identification problem. In the following sections, the imple-
mentation details will be described and the comparisons will
be reported.

III. DEEP METRIC LEARNING

Affected by various factors, the similarity of two person
images is hard to evaluate. Under the joint influence of
resolution, illumination and pose changes, the ideal metric for
person re-identification maybe highly nonlinear. Deep learning
is exact one of the most effective tool to learn the nonlinear
metric function.

A. Architecture

For most of pattern recognition problems, neural network
works in a standalone mode. The input of neural network is a
sample and the output is a predicted label. This mode works
well for handwritten digit recognition, object recognition and
other classification problems when the labels of the training set
are the same as the testing set. For the person re-identification
problem, the subjects in the training set are generally different
from those in the testing set, therefore the “sample — label”
style neural network cannot apply to it. To deal with this prob-
lem, we construct a siamese neural network, which includes
two sub-networks working in a “sample pair — label” mode.

The flowchart of our method is shown in Figure 1. Given
two person images, they are first separated into three over-
lapped parts respectively and the image pairs are matched by
three siamese convolutional neural network (SCNN). For two
image patches x and y, SCNN can predict a label [ = +1 to
denote whether the image pair comes from the same subject
or not. Because many applications need rank the images in
the database based on their similarities with a probe image,
our SCNN outputs a similarity score instead. The structure
of the SCNN is shown in Figure 2, which is composed by
two convolutional neural networks (CNN). And the two CNNs
are connected by a cosine layer. The similarity of two image
patches is calculated by

. Bi(x)" By(y)
VBi(x)TBi(x)/Bs(y) " Bs(y)’

where B and By are the functions of the two CNNs respec-
tively.

ey

Existing siamese neural networks have a constraint, that is
their two sub-networks should share the same parameters, i.e.,
weights and biases. In this paper, we remove this constraint
in some conditions. Without parameters sharing, the network
can deal with the view specific matching tasks more naturally.
With parameters sharing, the network is more appropriate for
general task, e.g., cross database person re-identification. We
call these two modes as “General” and “View Specific” SCNN.
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Fig. 1. The flowchart of the proposed method. Learning three SCNNs for
each part independently and fusing them by sum rule.
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Fig. 2. The structure of the siamese convolutional neural network (SCNN).
The SCNN can work in two modes: sharing parameters (General SCNN) and
independent parameters (View Specific SCNN)
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Fig. 3. The structure of the 5-layer CNN used in our method.

B. Convolutional Neural Network

The CNN in this paper (Figure 2) is composed by 2 convo-
lutional layers, 2 max pooling layers and a full connected layer.
As shown in Figure 3, the number of channels of convolutional
and pooling layers are 32, 32, 48 and 48. The output of the
CNN is 500 dimensions. Every pooling layer includes a cross-
channel normalization unit. Before convolution the input data
are padded by zero values, therefore the output have the same
size with input. The filter size of CI1 layer is 7 x 7 and the
filter size of C2 layer is 5 x 5. ReLU neuron [17] is used as
activation function for each layer.

C. Cost Function and Learning

Backpropagation (BP) [18] is used to learn the parameters
of SCNN. For cost function, we propose three candidates as
shown in Figure 4: Square loss, Exponential loss, and Binomial
deviance [19]. Given a sample pair’s similarity —1 < s < 1
and their corresponding label [ = +1, the three cost functions
are written as
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Fig. 4. Cost function candidates for the SCNN. The hinge cost is also drawn
for reference, which is used in SVM classifier.

From Figure 4 we can see that Exponential loss give the
largest cost when the similarity has incorrect sign and the shape
of Deviance loss is very similar with Hinge loss which has
been proved robust to outliers. By considering Hinge loss is
not differentiable at sl = 1, we use Deviance as cost function
to optimize the neural network.

By plugging Equ. (1) into Equ. (4), we can get the forward
propagation function to calculate the cost from a sample pair.

Jdev _ ln(672Cosine(B1(x),Bz(y))l + 1) (5)

Differentiating the cost function with respect to the input
samples x and y, we can get
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where || - || denotes the magnitude of vector.

Based on Equ. (5), Equ. (6) and Equ. (7), we can learn the
parameters of SCNN by standard BP algorithms. In traditional
neural network, the error is backward propagated from top to
down through a single path. On the contrary, the error of SCNN
is backward propagated through two branches by Equ. (6)
and Equ. (7) respectively. When training samples from two
different domains are sent to two branches, each branch can
adapt to the corresponding domain well. In practice, we also
can assign asymmetry label [ to positive and negative sample
pairs to tune the network, e.g., 1 for positive pairs and -2 for
negative pairs.

Our network is trained by batch based stochastic gradient
descent. The size of batch is 128 including 64 positive and 64
negative image pairs. When converting a multi-class training
set into binary-class, the number of negative pairs is far more
than positive pairs. Therefore, we randomly select negative
pairs from the whole negative sample pool for each batch. For



person re-identification problem, about 300 epoches are needed
to obtain good results.

IV. EXPERIMENTS

Five popular databases were built for person re-
identification: VIPeR [4], i-LIDS [20], ETHZ [21],
CIVAR [22] and CUHK Campus [5]. Among these databases,
the evaluation protocol of VIPeR is the clearest one, therefore
we compare our method with other methods on VIPeR. The
experiments are conducted in two settings:

1)  Single database person re-identification: training and
testing both on VIPeR using view specific SCNN;

2)  Cross database person re-identification: training on
CUHK Campus and testing on VIPeR using general
SCNN.

A. Single Database Person Re-Identification

Except for the newest paper [6], other papers all conduct
experiments in this setting that is training and testing on the
same database. VIPeR includes 632 subjects and 2 images per
subject coming from 2 different camera views (camera A and
camera B). We split VIPeR into disjoint training (316 subjects)
and testing set (316 subjects) randomly, and repeat the process
11 times. The first split (Dev split) is used for parameter tuning,
such as the number of epoch, learning rate, weight decay and
so on. The other 10 splits (Test splits) are used for reporting
the results.

In the training stage, all training images from camera A
and camera B are grouped into pairs randomly and send to a
view specific SCNN. The pairs from same subjects are labeled
as positive, and those from different subjects are labeled
as negative. Each camera corresponds a sub-network in the
SCNN. In the testing stage, one image of each subject is used
as gallery and the other one is used as probe.

Before evaluate the performance, we use the first part (head
part) to tune the most two important parameters on the Dev
split: the number of training epoch and the cost for negative
sample pairs.

1) The Number of Epoch: Figure 5 shows the epoch-cost
curve on the Dev split. Low cost reflects high performance ap-
proximately although there is no explicit relationship between
the cost and the recognition rate. At the beginning of training,
the cost of the test set drops significantly and it gradually
becomes converged after epoch > 250. Finally, we set epoch
= 300 based on our experience.

2) Asymmetric Cost: As described in Section III-C, the
two class training set converted from multi-class is very
asymmetric. The number of negative sample pairs is far more
than positive pairs. In the training process, we cannot cover
all negative pairs so just randomly select a portion of them to
construct the training batch. This may cause the negative pairs
prone to under-fitting.

To balance the weight of positive and negative sample pairs,
we can assign asymmetric costs to them. While fixing the cost
of positive pair to 1, we tune the cost of negative pair ¢ from
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Fig. 5. The relationship between the number of epoch and the deviance cost
on the Dev split. X axis is the number of training epoch, and Y axis is the
deviance cost of the network.

TABLE 1. THE RANK-30 RECOGNITION RATES ON THE DEV SPLIT AT
DIFFERENT NEGATIVE COSTS (PART1: HEAD).
Negative cost Rank-30 recognition rate
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c=2 74.37%
c=4 56.01%
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Fig. 6. The rank curves of the 3 parts and the whole image on VIPeR.

0.25 to 4. The asymmetric cost can apply easily on Equ. (5),
Equ. (6) and Equ. (7) by setting

z:{l
—C

Table I shows the relationship between the negative cost ¢
and the rank-30 recognition rate of the first part (head part). On
the Dev split, the highest performance is achieved at ¢ = 2.
This illustrates that the negative pairs should be paid more
attention in each training batch.

for positive pair
for negative pair

®)

3) Results: After tune the parameters, we keep them fixed
in the following experiments, i.e., epoch=300 and c=2. Because
each person image is divided into three parts: head, body and
leg, the training and testing are done for each part respectively
and the three similarity scores are fused by sum rule. Repeating
the experiments 10 times on the Test splits, the average rank
curves are shown in Figure 6.

For precise comparison, we also list the recognition rates in
Table II. The results of compared methods are copied from the
original papers. If the results are unavailable, they are leaved
as “-”. From the table we can see that the proposed method
outperforms most of compared methods. Especially, it is on a
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Fig. 7. Some convolutional filters learned on the VIPeR database. Top: the
filters in the first sub-network for camera A; Bottom: the filters in the second
sub-network for camera B.
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par with the current state-of-the-art [5]. The rank-1 and rank-
50 recognition rates of [5] are higher than ours slightly, and
our method outperforms [5] in other situations. Among all
methods, our method is nearly the most simple and elegant
one. From the bottom to top layers in the network, every
building block contributes to a common objective function and
is optimized by BP algorithm simultaneously.

Figure 7 shows some filters learned by the first convolu-
tional layer of our network. The filters of each sub-network
have different colors and texture patterns, which means that
they capture the information in the corresponding camera view
efficiently. Because the filters in all layers are multi-channel,
the color and texture information are fused in a very natural
way.

B. Cross Database Person Re-Identification

In this section, we conduct a more challenging experiment
which is coincide with practical applications. In practical
systems, we usually collect a large dataset first and train a
model on it. Then the trained model is applied to other datasets
or videos for person image matching. A practical person
re-identification algorithm should have good generalization
with respect camera view changes and dataset changes. The
previous works mainly focused on camera view changes but
the cross database person re-identification problem was less
studied.

[6] in the past ICCV 2013 has started to concern this
problem. In [6], the authors proposed a transfer Rank SVM
(DTRSVM) to adapt a model trained on the source domain (i-
LIDS or PRID [25]) to target domain (VIPeR). All image pairs
in the source domain and the negative image pairs in the target
domain are used for training. Different from DTRSVM, our
network trains in the source domain only and its generalization
is tested in the target domain.

CUHK Campus database is used as training set, which
includes 1816 subjects, 7264 images. Each subject has 4
images from 2 camera views. The resolution of CUHK Campus
is 60 x 160. Before training, we scale them to 40 x 128
first. For the testing set, we use the same setting with the
last experiment. A half of subjects and images are randomly
selected from VIPeR to construct the testing set, including 316
subject, 632 images. The testing is repeated 10 times too, and
the average rank curve is reported.

The images in CUHK Campus database are captured in 5
batches. The camera views between the batches are different
and they are more different from the camera views of VIPeR.
Due to the independence of camera views between the training
and testing set, the view specific SCNN cannot be applied in
this experiment. Therefore, a general SCNN is used for this
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Fig. 8. The rank curves of the 3 parts and the whole image in the cross
database experiment (CUHK Campus — VIPeR).

TABLE III. CROSS DATABASE EXPERIMENT: COMPARISON OF THE
PROPOSED METHOD AND DTRSVM [6] ON VIPER.

Methods Training Set 1 10 20 30
DTRSVM i-LIDS 8.26% 31.39% | 44.83% | 53.88%
DTRSVM PRID 10.90% 28.20% | 37.69% | 44.87%

Ours CUHK Campus | 16.17% 45.82% | 57.56% | 64.24%

Fig. 9. Some convolutional filters learned on the CUHK Campus database.

task by letting the two sub-networks share their parameters.
By grouping 7264 images into pairs, we get 10896 positive
and 26368320 negative samples on CUHK Campus. Then the
general SCNN is trained with the same number of epoch and
negative cost as the previous experiment.

Figure 8 shows the rank curve of three parts and their
fusion. The performance differences of three parts are more
obvious than Figure 6. From the figure, we can see that the
order of performance is body>head>leg, which is consistent
with our intuition. Generally, the body is the most stable part
in the person images and the leg is most unstable. Parts fusion
improves the performance significantly in both experiments.

The recognition rates are shown in Table III and the
results of DTRSVM [6] are listed for comparison. Because
the scale of i-LIDS and PRID is too small to train a good
neural network, we only use CUHK Campus as training set.
From the results we can see that our method outperforms
DTRSVM significantly and even approach the performance
of some methods in single database setting, such as ELF [12]
and RDC [2].

In the visual sense, the images in CUHK Campus have
richer texture and better quality than VIPeR. The filters learned
on CUHK Campus verify this point. The filters in Figure 9
have clearer structure than those in Figure 7. But the VIPeR
filters have higher contrast in color, this may be caused by the
different capture environments of VIPeR and CUHK Campus.

V. CONCLUSIONS

This paper proposed a deep metric learning method by
using siamese convolutional neural network. The structure
and training process were described in detail. Two person
re-identification experiments were conducted to illustrate the



TABLE II. SINGLE DATABASE EXPERIMENT: COMPARISON OF THE PROPOSED METHOD AND OTHER STATE-OF-THE-ART METHODS ON VIPER.
Rank
Method 1 5 10 15 20 25 30 50
ELF [12] 12.00% | 31.00% | 41.00% - 58.00% - - -
RDC [2] 15.66% | 38.42% | 53.86% - 70.09% - - -
PPCA [23] 19.27% | 48.89% | 64.91% - 80.28% - - -
Salience [9] 26.74% | 50.70% | 62.37% - 76.36% - - -
RPML [24] 27% - 69% - 83% - - 95%
LAFT [5] 29.6% - 69.31% - - 88.7% - 96.8%
Ours 28.23% | 59.27% | 73.45% | 81.20% | 86.39% | 89.53% | 92.28% | 96.68%

superiority of the proposed method. This is the first work to
apply deep learning in the person re-identification problem
and is also the first work to study the person re-identification
problem in cross database setting. Extensive results illustrated
that the network can switch flexibly between two modes to deal
with the cross view and cross database person re-identification
problems. In the future, we will apply DML to other applica-
tions; explore the way to pre-train the network; and investigate
the effect of “dropout” in the applications. Moreover, we will
continue to research how to train a general person matching
engine with good generalization across database.
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