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Abstract

Low resolution (LR) is an important issue when handling
real world face recognition problems. The performance of
traditional recognition algorithms will drop drastically due
to the loss of facial texture information in original high
resolution (HR) images. To address this problem, in this
paper we propose an effective approach named Simulta-
neous Discriminant Analysis (SDA). SDA learns two map-
pings from LR and HR images respectively to a common
subspace where discrimination property is maximized. In
SDA, (1) the data gap between LR and HR is reduced by
mapping into a common space; and (2) the mapping is de-
signed for preserving most discriminative information. Af-
ter that, the conventional classification method is applied in
the common space for final decision. Extensive experiments
are conducted on both FERET and Multi-PIE, and the re-
sults clearly show the superiority of the proposed SDA over
state-of-the-art methods.

1. Introduction
During the past decades, face recognition has received

great interest and achieved impressive success, especially
in applications under controlled environment. However, the
performance of face recognition in uncontrolled environ-
ment is still far from being satisfactory. In this paper we
focus on the low resolution face recognition problem. Low
resolution issue is common in real world applications, for
instance, in surveillance based face recognition faces are
frequently captured at a distance, making the images rel-
ative very small and unclear. Face recognition based on LR
images is a very challenging problem because compared
with high-resolution (HR) images, LR ones lose much fa-
cial information (e.g. skin texture) which is crucial for high
recognition accuracy.

To deal with this problem, there are usually three existing
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categories. One category is to extract the invariant discrimi-
nant information from low-resolution images directly. Su et
al. [16] utilized FFT technique to extract the global struc-
ture information of face image for recognition. Li et al. [10]
proposed coupled metric learning to transform the high and
low resolution images into a feature space to be classified.
These methods usually require the images to be well aligned
and their performance may decline due to misalignment.
Some approaches are based on low resolution invariant lo-
cal features, such as, local phase quantization(LPQ)[14]
and local frequency descriptor(LFD)[7], etc. In [1], LPQ
is designed based on an assumption on point spread func-
tion (PSF) that in low frequency the phase value of LR and
HR is unchanged. However, such assumption is not always
the case in real world applications. Inspired by LPQ, Zhen
Lei et al. [7] proposed LFD by quantizing the relative lo-
cal pixel relationship in low-frequency domain instead of
absolute value so that the assumption on PSF is no longer
needed. However, these blur-invariant descriptors cannot
achieve very high accuracy when the images are of very
low resolution.

The second category to deal with this problem is ”two-
step” based methods which first synthesize the HR images
from a single or multiple LR ones by super-resolution(SR)
techniques and then the traditional algorithms could be ap-
plied consequently. Freeman et al. [3] proposed a patch-
wise Markov network learned from the training set as the
SR prediction model. Liu et al. [13] proposed to integrate a
holistic model and a local model for SR reconstruction.We
refer readers to [17] for other methods. Unfortunately, most
of these SR algorithms are not designed for recognition, but
for visual enhancement of images.

Recently, a series of works [18, 6, 11] have been pro-
posed to avoid explicit SR procedure in the image domain
but to learn a mapping from LR image to HR image in train-
ing set and then apply it to testing set. The approach which
performed SR reconstruction in the eigenface domain has
been investigated in [5]. P. Hennings-Yeomans et al. [18]
propose a joint objective function that integrates the aims
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of super-resolution and face recognition. H. Huang and H.t.
He [6] proposed to perform a nonlinear mapping between
HR/LR PCA features via radial basis functions (RBFs) in
a coherent space obtained by Canonical correlation analy-
sis (CCA). B. Li [11] developed an objective function that
agrees with CCA by introducing a penalty weighting ma-
trix to maintain locality. Compared with two-step methods,
these approaches improved the recognition rate. However,
most of these algorithms are unsupervised, discarding the
sample labels which are crucial for classification.

In this paper, we propose Simultaneous Discriminant
Analysis to learn a couple of mappings from LR and HR
face images respectively to a common subspace, where the
mapping function is designed on the idea of the classical
discriminant analysis [2]. Then the conventional classifi-
cation methods be applied.By mapping into the common
space, the data gap between LR and HR faces are reduced,
and therefore can achieve better classification results.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the problem formulation and the proposed
algorithm. Section 3 discusses the relations to the most re-
lated methods. Experimental results on some databases are
given in Section 4. Finally in Section 5, we conclude the
paper.

2. Simultaneous Discriminant Analysis(SDA)
2.1. Problem Formulation

In this work, we suppose the working scenario as fol-
lows. HR face images are enrolled, and LR ones are used to
test. Our approach firstly attempts to project the data points
in the original HR and LR image subspaces into a third com-
mon subspace by a couple of mappings: one for LR vectors,
fL : <m 7→ <d, the other for HR ones, fH : <M 7→ <d. m,
M and d represents the dimensions of the original LR, HR
and the third subspaces respectively. Then some distance
metric can be computed in the new feature space by

dij = D(fL(li), fH(hj)) (1)

where li and hj respectively denotes the i th and j th sam-
ple of LR and HR face image sets. Then classification can
be performed consequently. Here we prefer linear mapping
functions. So we assume that two matrices PL and PH with
sizes of m× d and M × d specify the mapping functions as
fL(xL) = PT

L xL and fH(xH) = PT
HxH , respectively.

The similarity measure of equation (1) indicates that the
LR and HR samples should be treated equally after they
are projected into the common subspace though they are
endowed with quite different discriminative information in
the original spaces. Therefor, to enhance the discriminative
power of the corresponding projection functions, it is natu-
ral to integrate the label information into the new common
space. Based on the principle of discriminant analysis, we

propose the objective to be

J(θH , θL) =
Jb(θH , θL)

Jw(θH , θL)
(2)

where Jb(θH , θL) and Jw(θH , θL) are measures of
between-class and within-class scatters in the common
space which are obtained by means of class membership
of samples regardless of their original identities of LR or
HR. θH and θL denote the parameters to be learned. By
maximizing the objective, the learning of projection func-
tions can be converted to a generalized eigen problem that
can be solved efficiently, and is illustrated in the following
subsection.

2.2. Algorithm

For convenience, we denote the two involved mappings
from LR and HR face image sets to the common subspace as
[l11, · · · , l1NL1

, · · · , lCNLc
] 7→ [y11 , · · · , y1NL1

, · · · , yCNLc
] and

[h11, · · · , h1NH1
, · · · , hCNHc

] 7→ [z11 , · · · , z1NH1
, · · · , zCNHc

].
whereNLi andNHj respectively denote the number of sam-
ples in the i th class of LR and the j th class of HR face sub-
sets; lci is the i th LR sample of class c, and hc

′

j is the j th
HR sample of class c’. The above mapping relationship can
be concisely formulated as Y = PT

L L and Z = PT
HH .

To facilitate the subsequent derivation, we firstly com-
pute the means of samples in each class of LR and HR face
subsets as

µLi =
1

NLi

NLi∑
j=1

lij , µHi =
1

NHi

NHi∑
j=1

hi
j (3)

and the total means of LR and HR faces as

µL =
1

NL

C∑
i=1

NLi∑
j=1

lij , µH =
1

NH

C∑
i=1

NHi∑
j=1

hi
j (4)

where NL = NL1 +NL2 + · · ·+NLC
and NH = NH1 +

NH2 + · · · + NHC
are the total numbers of samples over

all classes corresponding to LR and HR face image sets,
respectively.

The final aim of the algorithm is to find the optimal pro-
jective matrixes (or directions) respectively and simultane-
ously for LR and HR images that gather the samples from
the same class and meanwhile disperse the samples from
different ones. To avoid to be of verbosity,we now consider
the case when the projection is of one dimension which
means that PL and PH are vectors. We also use PL and PH

to denote the one-dimensional projection directions sepa-
rately for LR and HR face images.

Under the projections of PL and PH , the mean of each
class and the total mean of all samples in the common sub-
space can be given by

µi =
1

Ni
(

NHi∑
j=1

zij +

NLi∑
j=1

yij) = αiP
T
HµHi

+ βiP
T
L µLi

(5)



µ =
1

N
(

C∑
i=1

NHi∑
j=1

zij +
C∑

i=1

NLi∑
j=1

yij) = αPT
HµH + βPT

L µL (6)

Where Ni = NHi
+ NLi

is the number of samples in the
i th class including both LR and HR ones projected to the
common space by PL and PH , andN =

∑C
i=1Ni = NH+

NL represent the total number of samples.
If we define the mutual ratios of the numbers of LR and

HR samples belonging to the i th class as αi and βi and the
ones of the total numbers of LR and HR samples as α and
β which are the following

αi =
NHi

NHi +NLi

, βi =
NLi

NHi +NLi

(7)

α =
NH

NH +NL
, β =

NL

NH +NL
(8)

and note equation (3), (5) and (7), the within-class scatter
can be easily computed by

Jwi(θH , θL) =

NHi∑
j=1

(zij − µi)
2 +

NLi∑
j=1

(yij − µi)
2

=
[
PT
H PT

L

] [ Ci
HH Ci

HL

Ci
LH Ci

LL

] [
PH

PL

]
= PTCiP

(9)

where P = [PT
HP

T
L ]T is the concatenation of the projectors

PH and PL. The blocks of matrix Ci are

Ci
HH =

NHi∑
j=1

(hi
j − αiµHi)(h

i
j − αiµHi)

T + α2
iNLiµHiµ

T
Hi

Ci
HL = −2βi(1 − αi)NHiµHiµ

T
Li

Ci
LH = −2αi(1 − βi)NLiµLiµ

T
Hi

Ci
LL =

NLi∑
j=1

(lij − βiµLi)(l
i
j − βiµLi)

T + β2
iNHiµLiµ

T
Li

(10)

Then summing within-class scatters over all classes, we get
the total within-class scatter

Jw(θH , θL) =
1

N

C∑
i=1

Jwi = PT (
1

N

C∑
i=1

Ci)P = PTSwP

(11)

among which Sw =
∑C

i=1 C
i, is the counterpart of Within-

Class Scatter Matrix in discriminant analysis[2].
Similarly, by substituting equations(3), (4), (5), (6), (7)

and (8) into the following, the between-class scatter is for-
mulated as

Jb(θH , θL) =
1

N

C∑
i=1

Ni(µi − µ)2

=
[
PT
H PT

L

] [ SHH SHL

SLH SLL

] [
PH

PL

]
= PTSbP

(12)

Where, the sub-matrixes of Sb are

SHH =
1

N

C∑
i=1

Ni(αiµHi − αµH)(αiµHi − αµH)T

SHL =
1

N

C∑
i=1

Ni(αiµHi − αµH)(βiµLi − βµL)T

SLH =
1

N

C∑
i=1

Ni(βiµLi − βµL)(αiµHi − αµH)T

SLL =
1

N

C∑
i=1

Ni(βiµLi − βµL)(βiµLi − βµL)T

(13)

By comparing with LDA[2], we can see that Sb is equivalent
to the so-called Between-Class Scatter Matrix.

Substituting (11) and (12) into (2), the objective becomes
to

arg max
P

J(θH , θL) =
Jb(θH , θL)

Jw(θH , θL)
=

PTSbP

PTSwP
(14)

Which can be reduced to solve the generalized eigen prob-
lem

S−1
w SbP = PΛ (15)

And the eigenvectors corresponding to the first d largest
eigenvalues of S−1

w Sb could constitute the expected trans-
formation matrixes, e.g., PL and PH (here, PL and PH are
all projection matrixes). Additionally, from equation (10)
we can deduce that αi should be equal to βi to ensure Ci

to be symmetric so that the symmetry of Sw be guaranteed.
This means that each class contains equal number of LR and
HR face samples in training sets which is usually satisfiable
in real applications because LR training samples can often
be obtained by blurring and down-sampling HR ones.

2.3. Regularization

Over-fitting can be avoided to some extent by regulariz-
ing the objective in equation (14). In the framework pro-
posed above, it is quite an easy and natural thing to incor-
porate some prior information into the objective function
which could boost the algorithm’s performance further.

Firstly, we consider the constraint of Local consis-
tency[19]. In fact, a regularization of local consistency can
be abstracted as minimizing a weighted cost when the cor-
responding objective is being pursued, which is computed
over all projected samples. Here we give a generic form of
risk as

Re =
γ

2

NH∑
i=1

NH∑
j=1

(PT
Hhi − PT

Hhj)
2vij

+
η

2

NL∑
i=1

NL∑
j=1

(PT
L li − PT

L lj)
2mij

+ ψ

NH∑
i=1

NL∑
j=1

(PT
Hhi − PT

L lj)
2wij

(16)



to be minimized. With a little of manipulation of matrix, the
above can be rewritten as

Re = γPT
HH(DV − V )HTPH + ηPT

L L(DM −M)LTPL

+ ψ(PT
HHWRH

TPH + PT
L LWCL

TPL − 2PT
HHWLTPL)

=
[
PT
H PT

L

] [ RHH RHL

RLH RLL

] [
PH

PL

]
= PTRP

(17)

Where V (vij) and M(mij) can encode some constraints
like local smoothing in HR and LR image sets respectively.
And constraints that resorts to labels from inter-sets can be
absorbed by W (wij). Specifically, DV is a diagonal matrix
with diagonal items DVii

=
∑NH

j=1 vij . DM has the similar
meaning in terms ofM . AndWR andWC are also diagonal
matrixes butWRii

=
∑NL

j=1 wij andWCii
=

∑NH

i=1 wij . W
is usually not symmetric unless the cost enforced on hi and
lj is the same as the one enforced on li and hj . The sub-
matrixes of R are computed as follows

RHH = γH(DV − V )HT + ψHWRH
T

RHL = −ψHWLT = RT
LH

RLL = ηL(DM −M)LT + ψLWCL
T

(18)

On the other hand, if we let alone the specific definitions
of the sub-matrixes of R and replace RHH and RLL with
some Laplacian matrixes and let RHL and RLH equal to
zero, the above cost will enforce some kind of constraints
on the projectors when it is being minimized, just like the
contextual one in [9]. Specially, when RHH and RLL are
some scalar matrixes, say RHH = γI and RLL = ηI , the
cost will convert to the conventional l2-norm regularization
on P . And this is also the form adopted in all the experi-
ments below.

Combing equation (14) and (17), we get the regularized
version of Simultaneous Discriminant Analysis (SDA)

arg max
P

J(θH , θL) =
PTSbP

PT (Sw +R)P
(19)

It can also be solved by a generalized eigen problem

(Sw +R)−1SbP = PΛ (20)

3. Difference with Most Related Methods
The most related methods to the proposed algorithm in-

clude Coupled Spectral Regression (CSR)[8] and Common
Discriminant Feature Extraction (CDFE) [12]. CSR was
introduced to deal with the problem of maching heteroge-
neous faces (NIR versus VIS). It’s motivation is also to col-
laboratively learn a couple of mapping functions that are of
discriminant. But the assumption incorporated into CSR is
that the directions of the expected projectors should be sim-
ilar to each other which is dubious in many problems. And

another rigid limit resulted from its assumption is that CSR
can not be used to tackle problems among which the two
involved sets are of different dimension (e.g., LR vs. HR)
directly. But in the proposed method, there is no such re-
quirement and limit. And in CDFE, class membership is
only exploited by a means of crossing sets, whereas in the
proposed method labels of samples are completely trans-
ferred to the common subspace and fully explored.

4. Experiments
We conduct our experiments on FERET face

database[15] and Multi-PIE face database. In order to
demonstrate the effectiveness of the proposed algorithm,
we compare our method with a series of baselines in
standard single-frame face recognition and the state-of-
the-art algorithm CM/CLPM[11]. The baselines comprise
of HR-LDA/PCA, which perform LDA/PCA in HR face
image domain; BL-LDA/PCA, which recognizes the fea-
ture extracted from the interpolated image that is obtained
by scaling a LR face to the size of HR one by bi-linear
interpolation.CM bases on coupled mappings which project
face images with different resolutions into a unified fea-
ture space that favors of classification.And CLPM is an
extension of CM which introduces a locality-preserving
constraint into its objective.

In all experiment face images are aligned by the coor-
dinates of two eyes and normalized to zero mean and unit
variance.And the algorithm of CM/CLPM used in below ex-
periments is downloaded from the web-site of the author of
[11].The parameters are set: α = 11 and N(i) = 1.

4.1. FERET

The training set of our experiment on FERET contains
1002 frontal face images from 429 persons. The experi-
mental results are obtained on the standard gallery (1196
images) and the probe set ”fafb” (1195 images).The first
five samples used are shown in Fig.1. In all experiment,
the HR face images are generated by scaling the original
ones to the size of 72× 72. and then the LR images of size
12×12 are acquired by smoothing and down-sampling their
corresponding HR ones. The regularization coefficients are
empirically assigned to γ = η = 10−5.

The recognition rates with different feature dimensions
are shown in Fig.2(a). Our method (SDA) with 69-D fea-
tures achieves the recognition rate of 92.7%. Whereas, the
highest recognition rates obtained respectively by the com-
pared algorithms are: HR-LDA 90.6%, CLPM 89.5%, CM
78.1%, BL-LDA 71.6%, HR-PCA 68.1%, BL-PCA 57.9%,
with feature dimensions of 100, 80, 144, 150, 457 and 176.
Which indicates that the proposed method outperforms the
state-of-the-art algorithm CLPM as well as HR-LDA. This
is really a surprise. However, the result is also quite reason-
able because SDA combines the discriminant information



Figure 1. Face images in FERET face database.(a) HR trainging
faces with size 72 × 72.(b)LR face images for training with size
12 × 12.(c)LR testing face images with size 12 × 12.

Figure 2. Rank-1 and cumulative recognition rates on FERET face
database.

from both HR and LR sets optimally to some extent which
more favor of classification. And another explanation to this
results perhaps lies in the property of FERET database itself
as discussed in the next section.The cumulative recognition
rates are illustrated in Fig.2(b).

4.2. Multi-PIE

In this experiment, influences of complexly-interacted
factors such as face poses, expressions and illumina-
tion variations to the proposed method are examined
with a subset of session one of Multi PIE face database
[4].Specifically, a total of 20,000 faces from the first 100

subjects with five poses(13 0, 14 0, 05 1, 05 0 and 04 1)
individually(As is illustrated in Fig.3), each of which has
two expressions that are seperately captured under twenty
kinds of illumination conditions are extracted to form our
training set. The gallery set contains only one frontal face
image from the other 149 individuals, which has neural ex-
pression and a nearly ideal illuminaion(10). And the left
29,651 face images that belong to the same pose subsets
and have the same combinations of expressions and illumi-
nation variations as the training ones but from the the other
149 registered subjects constitute the probe set. Just like in
sec.4.1, we also resort to l2-norm to regularize the objective,
and the related coefficients are assigned to γ = η = 10−6.

The HR and LR samples are obtained by smoothing and
down-sampling the original face images to the resolutions
of 48 × 48 and 12 × 12, respectively. The Rank-1 and cu-
mulative recognition rates are illustrated in Fig.4(a) and (b).
From Fig.4(a), we can see that our proposed method SDA
achieves a pretty high recognition rate of 69.5% with 25-
D features. Which greatly outperforms most of the border-
lines (CLPM 52.1%, CM 14.6%, HR-PCA 17.5%, BL-PCA
2.6%, BL-LDA 3.9%) and is lower than but quite compa-
rable to the result of HR-LDA algorithm, 77.2% in 24-D
subspace.

By comparing Fig.2 and Fig.4, we can find out that the
performances of the same algorithms on the FERET are su-
perior to the ones obtained on Multi-PIE. The main reasons
except the specific sizes of the two databases, we consider,
lie in two aspects. The first one is that the identities in the
standard training, gallery and probe sets of FERET on are
not independent of each other which means that they are
overlapped with a quite portion of sample IDs. Whereas, in
our experiments on Multi-PIE, we have intended to avoid
such circumstances and evaluated algorithms objectively.
The second one is there are too many factors, for example,
poses, expressions and illumination variations, and their in-
teractions in Multi-PIE that could decline the performance
of any algorithm. However, both experiments demonstrate
that class-membership information maintain quite a degree
of consistency to contribute to classification. And the re-
sults comparable to HR-LDA obtained by the proposed
method justify our conjecture and motivation.

5. Conclusion

In this paper, we have formulated a method named simul-
taneous discriminant analysis (SDA) to deal with lowreso-
lution face recognition problem. SDA learns two mappings
for LR and HR face images respectively into the common
space, where the discrimination is maximized for classifica-
tion. Extensive experiments are conducted on FERET and
Multi-PIE database, which proves its efficiency and superi-
ority to previous methods.



Figure 3. Face image samples from Multi-PIE database, left to
right correspond to Pose 13 0, 14 0, 05 1, 05 0 and 04 1.

Figure 4. Rank-1 and cumulative recognition rates on Multi-PIE
face database.
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