
Towards Incremental and Large Scale Face Recognition

Junjie Yan Zhen Lei Dong Yi Stan Z.Li∗

Center for Biometrics and Security Research & National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences

95 Zhongguancun Donglu, Beijing 100190, China
{jjyan,zlei,dyi,szli}@cbsr.ia.ac.cn

Abstract

Linear discriminant analysis with nearest neighborhood
classifier (LDA + NN) has been commonly used in face
recognition, but it often confronts with two problems in real
applications: (1) it cannot incrementally deal with the in-
formation of training instances; (2) it cannot achieve fast
search against large scale gallery set. In this paper, we
use incremental LDA (ILDA) and hashing based search
method to deal with these two problems. Firstly two in-
cremental LDA algorithms are proposed under spectral re-
gression framework, namely exact incremental spectral re-
gression discriminant analysis (EI-SRDA) and approximate
incremental spectral regression discriminant analysis (AI-
SRDA). Secondly we propose a similarity hashing algorithm
of sub-linear complexity to achieve quick recognition from
large gallery set. Experiments on FRGC and self-collected
100,000 faces database show the effective of our methods.

1. Introduction
As one of the most successful biometric technology, face

recognition has been a hot topic in computer vision and
widely used in many commercial situations. However, in
many face recognition applications such as forward crim-
inal search, social networking consolidation, training data
may come in an incremental way and the gallery set grows
to be of large scale. Conventional face recognition tech-
niques, such as batch LDA + NN, may not be suitable for
these applications.

Linear Discriminant Analysis (LDA) has been widely
used in supervised dimension reduction [15]. In many face
applications, labeled faces comes sequentially as time e-
lapses. Therefore it is desirable to update the optimal pro-
jection matrix with the incoming data incrementally in-
stead of the time consuming batch-mode recalculation. To
achieve this goal, some incremental LDA methods have

∗Stan Z. Li is the corresponding author.

been proposed recently. In [7], a method was proposed to
incrementally update within-class and between-class scat-
ter matrix, but it can’t incrementally update the most time
consuming eigenvalue decomposition problem. Based on
LDA/GSVD [13], a GSVD-ILDA algorithm [14] was pro-
posed, in which minor components are removed to reduce
the cost. In [5], sufficient spanning set is used to update the
between-class and within-class matrices. However, it is d-
ifficult to determine the degree of trade-off between speed
and accuracy in both [14] and [5]. In [6], an incremental
version of least square LDA [12] was proposed, and a closed
form solution with little complexity cost is given. However,
the constraint rank(Sb) + rank(Sw) = rank(St) may not
hold in real applications.

Nearest Neighborhood (NN) is commonly used to do
recognition after faces are projected from original feature
space to discriminant feature space according to the learned
LDA projection matrix. However, in many face recognition
applications, gallery set tends to reach a scale of tens of t-
housands or even millions of images [8]. Under this circum-
stance, a query by NN classifier demands a huge time cost.
There has been little work paying attention to the query
speed. [11] uses component-based local feature voting to
get a small relevant subset firstly, and then a global ham-
ming signature was adopted to re-rank. Since local feature
voting is linear complexity, it is still time consuming when
gallery is large enough. Hashing based methods are per-
haps the most popular ones, especially the locality-sensitive
hashing (LSH) [3, 2]. LSH have been commonly used in
image retrieval, however, [11] found that their performance
degrades quickly in face recognition. The possible reason is
that the binarization in LSH loses too much discriminative
information for face recognition.

Different from widely used LDA+NN framework, our
ILDA+Hashing framework can be updated incrementally
and can achieve both accuracy and efficiency. The remain-
der of the paper is organized as follows. In Section 2, we
give our two ISRDA algorithms. In Section 3 details of
the similarity hashing algorithm are given. Experiments on

1

FRGC and a self-collected database are given in Section 4.
Finally, we provide some concluding remarks in Section 5.

2. Incremental Spectral Regression Discrimi-
nant Analysis

Firstly, we give a brief review of spectral regression dis-
criminant analysis. Suppose we have N training instances
X = [x1,x2, · · · ,xN], where xj is am×1 vector. To sim-
plify exposition, we supposeX has been centered. SRDA is
equivalent to traditional LDA by solving the following two
equations [1].

Wy = αy
XT a = y

(1)

where y is the low dimension embedding for training sam-
ples and a is the projective vector from the original data
space to the discriminant subspace. W is the similarity
matrix that describes the relationship among samples. [1]
shows that the solution of y can be constructed straightfor-
wardly by

yk = [0, · · · , 0︸ ︷︷ ︸∑k−1
i=1 mi

, 1, · · · , 1︸ ︷︷ ︸
mk

, 0, · · · , 0︸ ︷︷ ︸∑K
i=k+1mi

]T k = 1, · · · ,K

(2)
The remaining work is to obtain the solution of a. In

order to avoid the overfitting problem in training set, a reg-
ularized least squares regression method is adopted so that
the solution of a can be obtained as

(XXT + λI)ak = Xyk (3)

where λ is a regularized parameter. The solution of (E-
q.3) can be derived by three steps. (1)Calculate the low-
er triangular matrix L, which is the Cholesky decompo-
sition of (XXT + λI) that satisfies (XXT + λI) =
LLT .(2)Calculate C = [c1, · · · , cK] where ck = Xyk.
(3)Calculate A = [a1, · · · ,aK], where ak satisfies that
LLTak = ck.

2.1. Exact Incremental SRDA

In some real applications, training instances may come
in an incremental way. It is too expensive to integrate incre-
mental training instances in batch SRDA for the calculation
of Cholesky decomposition and C since the computation
complexity is O(n3) ; what’s more, the traditional incre-
mental LDA algorithms fail to achieve the same high accu-
racy as batch SRDA. Now we will propose our EI-SRDA
algorithm to achieve the same solution as LDA but in an in-
cremental manner of low computation cost. Following the
batch SRDA procedure, we incrementally update Cholesky
decomposition, C and A.

2.1.1 Update the Cholesky Decomposition

Given an incremental training instance v, the training set
becomes X ′ = [X,v]. Updating the Cholesky decompo-
sition equals finding a lower triangular matrix that satisfies
the following equation:

L′L′T = [X,v][X,v]T = LLT + vvT (4)

This problem is called rank-one update and have been re-
searched in [4]. By adding a zero vector 0, we can get

L′L′T + 00T = LLT + vvT (5)

[0, L′]
[

0T

L′T

]
= [v, L]

[
vT

LT

]
(6)

If we can find a set of orthogonal matrices {Gj} which sat-
isfy [

0T

L′T
∗

]
= Gm · · ·G2G1

[
vT

LT

]
(7)

where L′∗ is a lower triangular matrix, we know that:

[0, L′∗]
[

0T

L′∗T

]
= [v, L]

[
vT

LT

]
(8)

Because of the uniqueness of Cholesky decomposition, L′∗

is actually equivalent to L′.
There are many {Gj} combinations which satisfy (E-

q.7). In this paper we use a set of Givens matrix. Denoting
s = sin(θ) and c = cos(θ), an orthogonal Givens matrix
can be constructed as:

Gθ(i, i) = c , Gθ(i, j) = s (9)
Gθ(j, i) = −s , Gθ(j, j) = c (10)

while other elements are the same with the m × m iden-
tity matrix. Givens rotation rotates the ith and the jth ele-
ments of a vector with θ angle while keeping other elements
unchanged. In this work, we use Gj to rotate [v̂j , L̂jj] to
[0, L̂′jj], where [v̂, L̂] = Gj−1Gj−2 · · ·G1[v, L]. The pa-
rameters of Gj are

rj =
√
v̂2j + L̂2

jj cj =
v̂j
r

sj =
L̂jj
r

(11)

After m rotations, we can get the new L. The dimension of
G is (m+1)× (m+1). Since Gj is a highly sparse matrix,
the calculation of matrix multiplication is fast.

2.1.2 Update the C

We use C to denote [c1, c2, · · · , cK], where ck = Xyk.
When a new instance is added, c′k = [X,v]y′k. There are
two possible cases when updating C.

Case1: When the added instance belongs to a new
class, the total class number becomes K + 1. For k ∈
{1, 2 · · · ,K}, we have yTk = [yk, 0]

T , and then c′k =
[X,v][y, 0]T = ck. For k = K + 1 we have yk =
[0, · · · , 0︸ ︷︷ ︸

N

, 1]T and then ck = [X,v][0, · · · , 0︸ ︷︷ ︸
N

, 1]T = v.

C ′ = [c1, c2, · · · , cK , cK+1] = [C,v] in this case.
Case2: When the added instance belongs to a class

which is already in the original training set, suppose the
class label is k1. The total class number remains the same.
For k 6= k1,yTk = [yk, 0]

T , so c′k = [X,v][yk, 0]
T =

ck. For k = k1, we have c′k = ck + v. C ′ =
[c1, · · · , ck1−1, ck1 + v, ck1+1, · · · , cK] in this case.

To sum up:{
C ′ = [C,v], Case1;
C ′ = [c1, · · · , ck1−1, ck1 + v, ck1+1, · · · , cK], Case2.

(12)

2.1.3 Update the A

When we have newL andC, we can calculate ak by solving
two triangular linear equations. SinceL is a lower triangular
matrix, Lb = ck can be solved by forward substitution,and
s LTak = b can be solved by back substitution. We solve
ak respectively and then combine ak to A.

Algorithm 1 shows the procedure of our Exact Incre-
mental Spectral Regression Discriminant Analysis(EI-
SRDA) algorithm. Note that in the algorithm every x
should be subtracted by the mean vector. Since the mean
value may change at every update procedure, we need to
update the total X according to its new mean vector. For-
tunately we can use a simple trick to avoid this by adding a
new element “1” to each x as discussed in [1]. Without loss
of clearness, we still use x in the context.

Only one instance update procedure is shown in Algo-
rithm. 1, when multiple new instances come at the same
time, step2 to step5 are to be repeated multiple times ac-
cordingly and then go to step6 to step10.

2.2. Approximate Incremental SRDA

Although EI-SRDA can get a close form solution, it
may be not suitable for real applications since that all the
gallery features need to be updated once the project matrix
is changed. It’s a huge computation when gallery set is of
the large scale for example, up to tens of thousand or mil-
lion scale. To solve the problem, we give an Approximate
Incremental Spectral Regression Discriminant Analysis
(AI-SRDA) algorithm that can integrate information of in-
cremental training items while only one column of the pro-
jection matrix is changed at one update procedure.

Every class corresponding to a projection vector ak in
SRDA and EI-SRDA. This inspires us to update the pro-

Algorithm 1 EI-SRDA
1: Input

the lower triangular matrix of Cholesky decomposition
L;
C = [c1, c2, · · · , cK];
an incremental item v with class label k1.

2: for j ∈ [1,m] do
3: Calculate {Gj} according to (Eq.11).
4: [v, L]T = Gj [v, L]

T

5: end for
6: Update C according to (Eq.12) and update class num-

ber K.
7: for all ck in C do
8: solving Lb = ck by forward substitution to get b.
9: LTak = b by backward substitution to get ak.

10: end for
11: output

Updated A = [a1,a2, · · · ,aK], L and C.

Algorithm 2 AI-SRDA
1: Step1:Step6 in Algorithm 1.
2: for all ck in C do
3: if ck is changed or ck is newly added.
4: solving Lb = ck by forward substitution to get b.

5: LTak = b by back substitution to get ak.
6: endif
7: end for
8: output

Updated A = [a1,a2, · · · ,aK], L and C.

jection vector whose corresponding instances have been
changed while keeping other projection vectors unchanged.

Similarly two situations are to be considered when up-
dating the projection vector. In Case1 as described in
Sec. 2.1.2 we need to add aK+1 toA. In Case2 in Sec. 2.1.2
we update ak1. The procedure of AI-SRDA is nearly the
same as EI-SRDA except that the step 7-10 in Algorithm 1
simplified to the steps in Algorithm 2

2.3. Complexity Analysis

The corresponding computation complexity of SRDA,
EI-SRDA and AI-SRDA are listed in Table. 1.

Table 1. Complexity Comparison
Method Time Complexity

Batch SRDA 1
2Nm

2 +KmN + 1
6m

3 + 2Km2

EI-SRDA 6m2 + 9m+ 2Km2

AI-SRDA 6m2 + 9m+ 2m2

In SRDA, the calculation of XXT takes 1
2Nm

2 op-
erations, the calculation of C = [c1, · · · , cK] =

[Xy1, · · · , Xyk] takes Kmn operations, the calculation of
Cholesky decomposition takes 1

6m
3 operations and solving

the 2K triangular linear equations takes 2Km2 operations.
Compared with batch SRDA, EI-SRDA can incremen-

tally update Cholesky decomposition and C. It makes EI-
SRDA much faster than batch SRDA in incremental situ-
ation. Calculating m Givens transform matrices takes 6m
operations, while calculating m sparse matrix multiplica-
tion takes 6m2 + 3m operations, which is faster than 1

3m
3

operations in decomposing the total matrix. It takesm oper-
ations to updateC compared withKmn in batch algorithm.
Since updating ak takes 2m2 step, updating A takes 2Km2

operations.
AI-SRDA is an approximate to EI-SRDA. Since there’s

only one column changed during one update procedure, we
need 2m2 calculation to update A, which is much faster
than 2Km2 in EI-SRDA and SRDA. The main reason why
we propose AI-SRDA is that it’s more suitable for update
gallery features, since only one dimension need to be up-
dated at one update procedure.

3. Similarity Hashing
After all instances are projected into a discriminant s-

pace which is learned by SRDA or I-SRDA, NN is com-
monly used to do the recognition. However the similari-
ty between probe and gallery set must be computed in a
pairwise way in NN based face recognition which may be
too time-consuming for large scale face recognition. In this
part, we use hashing technology to approximate the similar-
ity without pairwise comparison.

Hashing function is used to map data fromRM toR. In
typical LSH algorithms, hash function is set to be f(x) =
sign(wTx+ b), which maps high dimensional data to a bi-
nary code, where w is a vector and b is an offset. In this
work, we use f(x) = wTx instead of sign function to p-
reserve more discriminative information, where w is a ran-
dom vector generated according to Gaussian distribution.

The similarity in high dimensional space can be pre-
served in low dimensional space to some extent. For ex-
ample, when d(f(x), f(y)) is small, d(x,y) is more likely
to be small. We use an adaptive step function, which is a
coarse approximation to to convert the distance to similari-
ty as follows.

simf (x,y) =

{
1, |f(x)− f(y)| < q;
0, |f(x)− f(y)| ≥ q. (13)

Since single hash function is too weak to deal with
complex problems, we use a set of hash functions F =
{f1, f2, · · · , fT } to give a more robust inference. The sim-
ilarity coding function simF,y(x) is defined as,

simF,y(x) = simF (x,y) =
1

T

T∑
k=1

simfk(x,y) (14)

When T → ∞, simF (x,y) is a robust approximation to
the similarity between x and y.

In real applications, the gallery set can be pre-collected
and preprocessed offline. Given a gallery set X =
{x1,x2, · · · ,xn}, it can be preprocessed by the following
three steps:

1. calculating the hashing values

Gk = {fk(x1), fk(x2), · · · , fk(xN)}, k = 1, 2, · · ·T

2. ascending sorting Gk as Sk

3. storing the index of Sk in Gk as Ik.

For example, if Gk = {0.1, 0.3, 0.2, 0.6, 0.4}, then Sk =
{0.1, 0.2, 0.3, 0.4, 0.6} and Ik = {1, 3, 2, 5, 4}. Below we
will show that how face recognition can be speeded up by
these preprocessing operations.

Instead of pairwisely calculating simf,y(xi), we can
get simf,y(X) = {simf (x1,y), · · · , simf (xN ,y)} at
the same time. As Sk is in ascending order, calculating
simf,y(xi) equals two binary search and some index opera-
tions: (1) Find the nearest index in Sk whose hashing value
is nearest with {f(y) − q} and {f(y) + q} by 2 log2(N)
comparisons, recorded as [l, u]; (2) Translate [l, u] to the o-
riginal index in Gk by using Ik, recorded as H; (3) Set the
corresponding slots in simf,y(X) indexed by H to 1, oth-
erwise set to 0. By setting neighborhood’s range b, we can
further reduce the amount of calculation. The detailed pro-

Algorithm 3 Similarity Hashing
1: Input

hash functions set: ft, t = 1, · · · , T
sorted hash values of gallery: St, t = 1, · · · , T
the index of St: It, t = 1, · · · , T
threshold to control the size of candidate set: η
a probe: y
N dimension vector C, with all elements initialized as
0.

2: for t ∈ [1, T] do
3: Calculate fi(y).
4: Use binary search to find the nearest neighborhood

of fi(y) in Sk, suppose the position is gt.
5: for i ∈ [gt − b, gt + b] do
6: simF,y(It(i)) = simF,y(It[i]) + 1.
7: end for
8: end for
9: Get candidate set: those samples corresponding with

the entries of simF,y larger than η.
10: Recognition: Re-Rank the candidate set using tradition-

al methods.

cess of the proposed method is described in Algorithm 3,

where simF,y is used to store approximation similarity be-
tween novel probe face and all gallery faces.

Thereinto η is a threshold controlling the size of candi-
date set, which is usually chosen by considering the trade-
off between accuracy and speed, e.g. when η = 0, all sam-
ples in gallery set are judged as candidates. Note that re-
rank can be performed using any traditional face recogni-
tion algorithms, such as Sparse Representation, Cosine dis-
tance+NN and so on.

Taking cosine distance+NN as re-rank algorithm for ex-
ample, the proposed method takes T (2b+1) add operations,
ρ×NM multiply operations, T log2(N) comparison oper-
ations and T (2b+ 1) index operations. When N →∞, the
ratio of computation complexity between similarity and NN
is

lim
N→∞

(2b+ 1)T + ρ×NM + T log2(N) + (2b+ 1)T

MN
= ρ

(15)
where M is the original data dimension and ρ is candidate
set’s proportion of gallery. By setting a proper η, we can
make ρ small enough without much accuracy loss, e.g. ρ =
0.001. Since Cosine distance+NN takes NM operations,
our algorithm is much faster.

4. Experiments on Face Recognition
Our experiments are conducted on FRGC v2.0 [9]. To

simulate the large scale face recognition, we also collect-
ed 100,000 face images with various pose, expression and
illumination conditions from the web. All the images are ro-
tated, scaled and cropped to 142× 120 according to the eye
positions. The boosted Gabor features [10] are extracted to
represent faces.

4.1. EI-SRDA, AI-SRDA v.s. SRDA

Firstly we compare our EI-SRDA, AI-SRDA with SR-
DA in terms of accuracy and efficiency. 100 classes from
the 222 classes in FRGC training set are selected to train
the initial recognition model. The left 122 classes are sim-
ulated as the incremental coming samples. The recognition
performance following Exp. 1 and 4 protocols in FRGC.
Accuracy was measured according to the verification rate
(VR) when false accept rate (FAR) is 0.001.

From Fig. 1 we can find that batch SRDA and EI-SRDA
can achieve nearly the same accuracy in both Exp. 1 and
Exp. 4. As an approximation, EI-SRDA have little accuracy
decrease.

Training time of batch SRDA increases as the number of
total trained instances increases, while update time of our
incremental algorithms remains almost unchanged, which
is much lower than SRDA. 36 to 64 instances was added
at one time in this experiment, and the fluctuation in the
added number causes corresponding fluctuation in update

Figure 1. Batch SRDA vs. Incremental SRDA in accuracy and
time.

time. The lower the number of new coming instances at one
update procedure, the more acceleration our algorithms are
expected to achieve.

4.2. Similarity Hashing v.s. NN

By projecting all features to the discriminant space
learned by incremental SRDA, we further compare sim-
ilarity hashing with NN. The comparison is conduct-
ed according to the FRGC protocol. CosineDistance
is used to do Re-Ranking. We give results when
SR = 1, 0.5, 0.2, 0.1, 0.05, 0.005 on Exp. 1 and SR =
1, 0.5, 0.2, 0.1, 0.05 on Exp. 4. It’s NN when SR =
1. In Fig. 2 we can find that our algorithm can achieve
VR=0.9703(@FAR=0.001) which is nearly the same with
NN by searching 0.5% of the total gallery set on Exp. 1.
As Exp. 4 is more challenging, our algorithm searches 5%
of total gallery set to get VR=0.8526(@FAR=0.001) which
is close to VR=0.8603(@FAR=0.001) of NN. From this ex-
periment we can find that our algorithm can achieve compa-
rable results with NN while gallery samples being searched
are much less.

FRGC Exp1 FRGC Exp4
Search Rate VR Search Rate VR

1(NN) 0.9739 1(NN) 0.8603
0.5 0.9739 0.5 0.8586
0.2 0.9739 0.2 0.8584
0.1 0.9739 0.1 0.8572
0.05 0.9739 0.05 0.8526

0.005 0.9703 0.01 0.8235
Figure 2. VR with different SR On FRGC(@FAR=0.001)

To evaluate the performance of our method on large s-
cale database, a 100,000 people database is added to the
target set of FRGC as the total gallery set. The range of the
neighborhood may influence the performance: on one hand,
if the range of neighborhood is too narrow, a lot of posi-
tive samples will be ignored; on the other hand, if the range
is too broad, step similarity function may lose discrimina-
tive ability. In Fig. 3, the number of hashing function is
empirically set to be 1000 and Accuracy(@SR=0.001) is
used to compare different parameters. In Exp. 1 we can
find that when neighborhood range is set to be 2000, the
Accuracy corresponding to the SR = 0.001 is more than
99%. Exp. 4 is more interesting: when the neighborhood
range is 1000, the Accuracy is the highest which is 0.98
@(SR = 0.001); when the neighborhood range enlarges to
2000, performance drops, for more negative samples with
similar illumination and blur kick out positive ones. As
most similarity samples are considered, when range reaches
5000, Accuracy returns to 97% but with more calculation.

FRGC Exp1 FRGC Exp4
Range Accuracy Range Accuracy

300 0.9356 300 0.6405
400 0.9583 400 0.6406
500 0.9688 500 0.7541
600 0.9753 600 0.7935

1000 0.9890 1000 0.9852
2000 0.9951 2000 0.8989
5000 0.9997 5000 0.9771

Figure 3. HR on FRGC&100,000 people database(@SR=0.001)

When the neighborhood range is set 1000, number of
hashing function is 1000 and SR is 0.001, a C++ imple-
mentation on a PC with single Intel Core2 CPU and 16G-
B memory shows that recognizing a probe from 116,028
gallery faces only takes 32ms while NN takes 970ms.

5. Conclusion

In this paper, incremental SRDA and similarity hashing
are proposed to improve the LDA+NN framework. There
are several advantages of our methods: (1)Our EI-SRDA is
an exact solution as SRDA and only need very little calcu-
lation to update projection matrix. (2) In AI-SRDA, only
one column of the projection matrix changed at one update
procedure , so that it costs little to update gallery features.
(3) Compared with NN, our similarity hashing can achieve
much speed-up and keep the accuracy. The proposed EI-
SRDA, AI-SRDA and Hashing algorithm provide a novel
insight to incremental and large scale face recognition prob-
lem, and it is reasonably believed they can be applied to a
wide range of applications.

Acknowledgements
The authors would like to acknowledge the following

funding sources: the Chinese National Natural Science
Foundation Project #61070146, the National Science and
Technology Support Program Project #2009BAK43B26,
the AuthenMetric R&D Funds (2004-2011), and the TAB-
ULA RASA project (http://www.tabularasa-euproject.org)
under the Seventh Framework Programme for research and
technological development (FP7) of the European Union
(EU), grant agreement #257289.

References
[1] D. Cai, X. He, and J. Han. Srda: An efficient algorithm for

large-scale discriminant analysis. TKDE, 20(1):1–12, 2008.
2, 3

[2] M. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, pages 380–388, 2002. 1

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In Symposium on Computational Geometry, pages
253–262, 2004. 1

[4] P. Gill, G. Golub, W. Murray, and M. Saunders. Methods for
modifying matrix factorizations. Mathematics of Computa-
tion, 28(126):505–535, 1974. 2

[5] T. Kim, B. Stenger, J. Kittler, and R. Cipolla. Incremen-
tal linear discriminant analysis using sufficient spanning sets
and its applications. IJCV, pages 1–17, 2011. 1

[6] L. Liu, Y. Jiang, and Z. Zhou. Least square incremental linear
discriminant analysis. In ICDM’09, pages 298–306. IEEE,
2009. 1

[7] S. Pang, S. Ozawa, and N. Kasabov. Incremental linear dis-
criminant analysis for classification of data streams. TSMCB,
35(5):905–914, 2005. 1

[8] G. W. Q. Patrick J. Grother and P. J. Phillips. Report on
the evaluation of 2d still-image face recognition algorithms.
Technical report, NISF, 2010. 1

[9] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek. Overview
of the face recognition grand challenge. 2005. 5

[10] S. Shan, P. Yang, X. Chen, and W. Gao. Adaboost gabor
fisher classifier for face recognition. In AMFG, pages 279–
292, 2005. 5

[11] Z. Wu, Q. Ke, J. Sun, and H.-Y. Shum. Scalable face
image retrieval with identity-based quantization and multi-
reference re-ranking. In CVPR, pages 3469–3476, 2010. 1

[12] J. Ye. Least squares linear discriminant analysis. In ICD-
M2007, pages 1087–1093. ACM, 2007. 1

[13] J. Ye, R. Janardan, C. Park, and H. Park. An optimization
criterion for generalized discriminant analysis on undersam-
pled problems. TPAMI, 26(8):982–994, 2004. 1

[14] H. Zhao and P. Yuen. Incremental linear discriminant analy-
sis for face recognition. TSMCB, 38(1):210–221, 2008. 1

[15] W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld. Face
recognition: A literature survey. Acm Computing Surveys
(CSUR), 35(4):399–458, 2003. 1

