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Abstract—Liveness detection is an indispensable guarantee for
reliable face recognition, which has recently received enormous
attention. In this paper we propose three scenic clues, which
are non-rigid motion, face-background consistency and imaging
banding effect, to conduct accurate and efficient face liveness
detection. Non-rigid motion clue indicates the facial motions
that a genuine face can exhibit such as blink, and a low
rank matrix decomposition based image alignment approach
is designed to extract this non-rigid motion. Face-background
consistency clue believes that the motion of face and background
has high consistency for fake facial photos while low consistency
for genuine faces, and this consistency can serve as an efficient
liveness clue which is explored by GMM based motion detec-
tion method. Image banding effect reflects the imaging quality
defects introduced in the fake face reproduction, which can be
detected by wavelet decomposition. By fusing these three clues,
we thoroughly explore sufficient clues for liveness detection. The
proposed face liveness detection method achieves 100% accuracy
on Idiap print-attack database and the best performance on self
collected face antispoofing database.

I. INTRODUCTION

The aim of face recognition (FR) is to recognize people’s
identity in a simple but efficient manner as people do in daily
lives. Especially at a time when social security is urgently
needed, there are sufficient reasons to believe that human
identification techniques such as FR will play a more and more
important role in areas such as access control, public security
monitoring and human-computer interaction (HCI), etc.

Despite the success, it is recently known that FR is vulner-
able to fake face attacks. People’s faces can be captured easily
in these days, even covertly, which makes face no longer a
secret biometric feature. Surveillance cameras in the public,
digital cameras and mobile phones, or just Google on the
Internet, people’s faces can be obtained easily. Moreover, with
the aid of modern technology, these captured faces can be
shown in various mediums: high quality photo, LCD screen,
or 3D masks. Fake faces can appear in all kinds of manners
which are probably hard to distinguish from genuine ones.
For example, the latest Android phones has face recognition
system, but unfortunately, it can be easily attacked by photos.

Facing the emerging security need of face biometrics,
researchers proposed several methods to tackle the problem
of face liveness detection. Generally speaking, there are three
categories of solutions for this issue. The first category is multi-
spectral approach which utilizes multi-spectral illumination
and imaging. As traditional fake methods are only for visible

light [20], fake faces will probably exhibit quite different
appearance under other spectrums, which provides clue for
liveness detection. Methods of this category firstly selected
specific wavelengths for illumination, and then a classification
process was adopted for final decision. Although promising
results were given in [7], [12], [20], these techniques all
required special expensive hardware, making them not as
convenient as other visible light based methods in real world
applications.

The second category is challenge-response approach based
on an intuitive idea that genuine people can respond to certain
challenges. The challenge-response manner works as follows:
the FR system gives out an order (challenge), and expects the
subject to act correspondingly (response); if this response is
successfully detected, then the subject is classified as genuine.
Responses are usually the biological motions, such as blinking,
mouth movement, head rotation, etc. Among them, blinking
is perhaps the most commonly used response. In [11], a
boosting classifier was trained to describe the eye state and the
state transition process was modeled as a conditional random
field (CRF). In [19], [10] various features were adopted and
boosting was applied as classifiers as well. Besides blinking,
mouth movement is also applied as well as the application
of voice. In [2], subjects were requested to speak certain
words, and by analyzing the mouth movement and the voice
waveform, liveness could be determined. Considering that head
is a 3D structure, the usage of 3D information can effectively
prohibits the attack of 2D planar fake faces such as photos.
Using optical flow, [8], [9] calculated the motion vector of head
rotation as a supplement to blinking detection. Despite their
success, the above methods impose heavy interaction demand
on the users, and may fail if only very ambiguous facial motion
exists.

The third category is based on texture analysis. [17] applied
DoG and LTV algorithm to extract liveness feature, and a very
complex classifier is sequentially trained. In [6], an approach
of multiple LBP extraction and SVM training was proposed
and showed better result than [17]. Recently, [1] released a
database on 2D liveness detection for IJCB’11 antispoofing
contest, and [6] achieved prefect performance. However in real
applications, different imaging conditions may cause serious
texture variations, which may fail the texture based approaches.
Another problem is that these methods only utilize single



image for liveness detection while the temporal information
is discarded, which may lose useful liveness information on
more challenging scenes.

In this paper, we focus on the common 2D anti-spoofing
issue and propose three novel liveness clues in both temporal
and spatial domain. Generally speaking, genuine faces can
exhibit non-rigid facial motions, while many fake faces cannot.
This difference forms our first liveness clue named non-rigid
motion clue. Furthermore, fake faces always reside on certain
displaying medium. This reliance makes the fake facial motion
is highly consistent with the background motion. This is
our second liveness clue named face-background consistency.
These two clues are all explored in temporal domain. Since
the 2D fake faces are usually printed by a printer or showed
through LCD screens, banding effect [5], which is absent in
a genuine face, probably will exist on the fake images, due
to the quality degradation in reproduction. This is the third
liveness clue named banding effect, and is explored in spatial
domain. The three clues are fused to give the final decision.
Different from previous works which only extract certain
feature and train “black box” classifier, our proposed liveness
clues have clear semantic definition. Moreover, compared with
other methods, our method need fewer training samples , thus
it is expected to have better generalization capability.

The remaining of the paper is organized as follows: in
Section 2 we briefly introduce the proposed three liveness
clues; in Section 3 detailed algorithms of detecting these
clues are discussed. In Section 4 experiments on two different
databases are given and finally in Section 5 we conclude this
paper.

II. LIVENESS CLUES DETECTION

The liveness detection scenario is described as follows:
given an input video of a subject, decide whether or not the
target face comes from the genuine human being.

Certain liveness clues are exhibited in the video which
provide the information needed for final decision, and the
task for liveness detection is to find what they are. Generally
speaking, these liveness clues have the following properties:
• Multiple exhibition manners. Many facial phenomena can

be adopted as liveness clues, and for a genuine person, it
is natural to exhibit one or several of them.

• Expressed at different levels. Some liveness clues, such
as blinking, are so evident that observers can immediately
recognize them; while some others may be so ambiguous
that they are too difficult to be captured, such as the slight
movement of facial muscles.

Based on the above observations, we herein propose three
clues for liveness detection. These clues reside on both spa-
tial and temporal domain: non-rigid facial motion and face-
background consistency possess temporal information while
image banding effect involves spatial information.

A. Non-rigid Motion Analysis
The essence of facial non-rigid motion analysis is to find the

non-rigid motion patterns in local face regions. For position-
fixed frontal face images, this problem is quite easy since

only non-rigid motion exists. However in real practice, faces
probably will also exhibit rigid motions such as head shift or
rotation, which makes the problem more difficult. The issue
is that we have to extract the facial regional non-rigid motion
from the facial global rigid motion.

We adopt the batch image alignment method to separate the
non-rigid motion from the rigid ones. Batch image alignment
utilizes a series of rigid transformation to align several images
to a fixed image, with the residual being the non-rigid motion.
Inspired by [13], the low rank matrix decomposition approach
is used here.

Specifically for our problem, faces are detected at every
frame and roughly aligned according to the detected eye
position. Then let them form a single matrix I = [I1, · · · , In]
where Ii is the 1D vector by raster scanning the original 2D
image matrix and n is the number of frames. The essential
appearance of the same face for all these frames should be
highly correlated, or even identical. However, considering the
existence of facial rigid and non-rigid motion, the observation
I is actually corrupted as follows:

I = I0 ◦ τ + E (1)

where I0 is the essential low rank matrix, τ is the affine
transformation matrix which is used to model rigid facial
motion like face pose and position change, and E is the sparse
residual caused by non-rigid facial motion. Every frame Ii has
a corresponding transformation τi which is used to transform
I0
i to Ii, and the non-rigid motion which cannot be modeled

by τi is consider as residual Ei. Our goal is to recover these
components to find the true non-rigid facial motion information
from E. Since I0 is essentially low rank and E is sparse
(facial regions always occur in certain local regions such as eye
and mouth), the problem can be formulated as the following
optimization problem:

{I0, E, τ} = arg min rank(I0)+λ‖E‖0, I ◦ τ = I0 +E (2)

Since the rank(·) and ‖ · ‖0 are nonconvex and discontin-
uous operations, Eq. 2 is too difficult to be effectively solved.
Herein we follow [13] and solve the following relaxations
problem instead:

{I0, E, τ} = arg min ‖I0‖∗ + λ‖E‖1, I ◦ τ = I0 + E (3)

where‖ · ‖∗ is the nuclear norm and ‖ · ‖1 is the `1 norm.
Some illustrative examples are shown in Fig.1. We can find

that the proposed method can detect the non-rigid motion of
genuine face sequence. For genuine face sequence, there are
some frames that have large sparse residual in eye regions
which corresponds to eye-blinking or in mouth regions which
corresponds to mouth movement. There may be some residual
in fake face video, such as the 1st and 6th frame in Fig. 1(b),
however they are uniformly distributed noises in the whole
face region. By defining regional feature, we can distinguish
the two kinds of residual easily.

Once the sparse non-rigid motion matrix E was obtained,
we can use it to extract liveness information. We assign Ωi as



(a) genuine face sequence

(b) fake face sequence

Fig. 1. Example of non-rigid motion analysis for liveness detection: the
process illumination. 1st row: automatic detected faces, I in Eq. 2; 2nd row:
automatic detected faces after alignment, I ◦ τ in Eq. 2; 3rd row: low rank
face sequence, I0 in Eq. 2; 4th row: Non-rigid residual, E in Eq. 2. (a) is a
genuine face video while (b) is fake face video.

the interesting facial region. In our experiment left eye region
Ω1 and right eye region Ω2 are selected as two interesting
facial regions. Facial non-rigid motion feature Si, i = 1, 2 are
formulated as follows:

Si = max
j=1,2,··· ,n

{

∑
(x,y)∈Ωi

|E(x, y)|∑
(x,y)∈Facej

|E(x, y)|
×

∑
(x,y)∈Facej

1(x, y)∑
(x,y)∈Ωi

1(x, y)
}

(4)
where

∑
(x,y)∈Ωi

|E(x, y)| is the residual of the jth frame in

region Ωi and
∑

(x,y)∈Facej

|E(x, y)| is the residual of the jth

frame in the face region.
∑

(x,y)∈(·)
1(x, y) is area of a region

which is used to remove the effects of area scale. If a face
sequences have a big Si like Fig. 1(a), the corresponding face
is considered genuine; otherwise fake. As an example, we give
the distribution of S1 and S2 on Idiap print-attack database [1]
in Fig. 2. From this figure we can find that genuine and fake
faces are separated. The final feature extracted in non-rigid
analysis is (S1, S2). Since it has only two dimension, it has a
better generalization ability and can be well trained by a few
number of training samples. By adding additional region, such
as mouth, the proposed method can be used to detect other
non-rigid facial motions as well.

B. Face-Background Consistency Analysis

In practice we find that mere non-rigid motion detection
is insufficient, since some genuine people may only have

Fig. 2. Non-rigid motion of genuine and photo attacks. Red point are genuine
face points while blue and green points are two kind of fake faces.

slight motion that can’t be detected through batch image
alignment. In this part, we explore and design face-background
consistency feature as a complementary to non-rigid motion
approach.

The face-background consistency is based on the observa-
tion that if the target face is genuine, its motion should be
totally independent from that of the background; otherwise
the motion relationship between face and background cannot
be totally independent because of the exhibition medium’s
constraint. Our task is thereby to define and explore such
motion consistency.

Firstly the scene motion has to be captured. As the exact
motion information is not required, we instead adopt the Gaus-
sian Mixture Model(GMM) [16] based background modeling
method [16] to describe the motion in the scene. The reason
why we use GMM instead of dense optical flow is that GMM
is more efficient while robust to illumination and noise. In
GMM the scene motion is described in an indirect but efficient
manner, which works well in our following experiments.
Examples of the genuine face, hand fake face photo, fixed fake
face photo and their detected motion by GMM are shown in
Fig.3. After some initialization, GMM outputs the foreground-
background binary image Bi, i = 1 · · · , n of a given frame
Ii:

Bi(x, y) =

{
1 if (x,y) belongs to foreground
0 otherwise (5)

Afterwards the face and background regions are determined
automatically according to a Viola-Jones face detector [18]. As
face detection has already been applied to every frame, the face
and background regions are roughly separated according to the
detected facial positions.

Then within the face and background regions, we record
the motion trends as time elapses. If the respective motion
trends of the face and background regions are very similar to
each other, or have high consistency, the face is probably fake;
otherwise, if there is low consistency, the face is probably an
independent existence, indicating that it is a genuine face. We
define mtj , j = 1, 2 to describe the motion trends.



Fig. 3. Face-background consistency analysis for liveness detection: the
process illumination. left is a frame from a video while right is detected motion
of the frame. 1st row: a frame of the genuine face video; 2nd row: a frame
of the handed fake face video; 3rd row: a frame of the fixed fake face video.
The red bounding box corresponding to automatically detected face.

mtj(i) =

∑
(x,y)∈Ωj

Bi(x, y)∑
(x,y)∈Ωj

1(x, y)
(6)

where
∑

(x,y)∈Ωj

Bi(x, y) is the number of foreground pixels,∑
(x,y)∈Ωj

1(x, y) is the area of region Ωj . In this part Ω1 is

face region while Ω2 is background region. The equation
above represents the motion within the scene by measuring
the motion area (foreground).

The motion trends are the vectors composed of face region
mt1(i) and background region mt2(i) for every frame, and
the divergence between mt1 and mt2 can be formulated as the
χ2 distance, which we call consistency motion distance(CMD)
here.

CMD =

n∑
i=1

(mt1(i)−mt2(i))2

mt1(i) +mt2(i)
(7)

The consistency motion distance of genuine face videos are
larger than those of fake face videos since mt1 and mt2 are
independent. The CMD value is taken as the firstly dimension
of the face-background consistency feature.

In Fig. 4 we show three examples. We can find that for the
genuine face video, there exists large divergences in motion
trends between the face regions and background regions;
meanwhile the motion trends of face and background regions
are very similar for both handed fake face video and fixed fake
face video.

The motion of hand hold photo attack attack videos are
global while the motion of genuine videos are local. This
inspires us to use the total motion as another measure. The
motion entropy me(i), i = 1, 2 · · · , n is defined as:

me(i) = −pi log(pi)− (1− pi) log(1− pi) (8)

where pi is the total foreground radio:

Fig. 4. Example of motion trends. Left is motion trend of face regions mt1
while right is motion trend of background regions mt2. 1st row: genuine face
video; 2nd row handed attacking face video; 3rd row: fixed attacking face
video.

pi =

∑
(x,y)∈Ω1∪Ω2

Bi(x, y)∑
(x,y)∈Ω1∪Ω2

1(x, y)
(9)

In some situations, pi = 0 then me(i) cannot be calculated,
so that we use pi = min{pi, 1/pixelnumber} to force
smoothness. To describe all the frames of a video, the motion
entropy histogram is used. Fig. 5 shows an example, from
which we can see that there’s a big difference between genuine
and fake face motion entropy histogram. The motion entropy
of handed fake face is very large compared with genuine face,
while the motion entropy of fixed fake face is close to 0. The
motion entropy is taken as the second dimension of the face-
background consistency.

Fig. 5. Example of Motion Entropy. 1st row: genuine face video; 2nd row:
handed fake face video; 3rd row fixed fake face video. Left is motion entropy
of every frame, right is the histogram of motion entropy in the total video.

C. Image Banding Analysis

Since fake faces are usually exhibited by certain medium,
inevitably some quality degradation will be introduced during
the imaging process. For photo based attacks, for instance,



TABLE I
RESULT OF OUR PROPOSED METHODS ON INDIAP PRINT-ATTACK DATABASE

Methods Background Accuracy
Non-rigid Motion Analysis all background 90%

Face-Background Consistency Analysis complex background 97.50%
Image banding Analysis uniform background 97.50%

Fusion all background 100%
PLS[15] all background 99.375%
MTA [6] all background 100%

print banding, jitter, and ghosting artifacts are all common
reasons for quality degradation as described in [5], [14]. Here
we focus on the banding effect. An example of banding effect
is shown in Fig. 6, from which we can find banding noise on
fake face image. Note that such kind of noises also exist in
video attacks. In a video attack case, the size of each LCD
screen emitting pixel is probably different from the sensing
pixel of the imaging camera. Furthermore, the flash frequency
of the LCD may not match the exposure frequency of the
camera. The above two mismatches will cause the strobeflash
effect in the captured image, which is very obvious banding
noises.

Fig. 6. Banding effect. Left is a genuine face without banding effects while
right is a fake face with banding effects.

Different from methods used in print banding estimation,
we find a very simple but effective way to do print banding
estimation in face liveness detection by wavelet decomposition.
As described in [4], [3], image noise can be estimated by a
robust median estimator as follows:

σ̂ =
Median{|y(i, j)|}

0.6745
y(i, j) ∈ HH1 (10)

where HH1 means the first order wavelet decomposition of the
image. Specifically in our problem, we treat the banding as a
kind of noise added to original image. We use Haar wavelet
in our experiment since the shape of Haar wavelet is similar
to the banding caused by printer or LCD screen.

The distribution of the median estimator values of test
videos with uniform background on Indiap database[1] is
shown in Fig. 7. The first 40 instances in Fig. 7 are genuine
faces images while other are fake ones. We find that the median
estimator values of fake face images are all near 0.74 while
most genuine faces are near 0 with only two exceptions. In
banding effect analysis, the only feature is σ̂.

D. Fusion of Multiple Clues

The proposed three clues are complementary in real appli-
cations. The non-rigid motion analysis can capture the liveness

Fig. 7. Median value of Haar wavelet decomposition

clues in videos with facial expressions. The face-background
consistency analysis can be used to capture the liveness clues
in videos with complex background. For videos with clean
background, the face-background consistency is valid, but the
proposed image banding effect analysis is suitable since that
these’s no background influence. In the following experiment,
we use the clues based on the image background condition.
For the videos with complex background, we use non-rigid
motion and face-background consistency clues, while for the
videos with clean background, we use the non-rigid motion
and the banding effect clues. Since the background condition
can be easily estimated by edge detection, our algorithm is
fully automatic.

In the experiment, in order to map the feature to score, we
learn logistic regression for the three clues respectively on the
training set, and the weights of different clues in fusion are
learnt on validation using grid search.

III. EXPERIMENTS

In this section two database are used to verify the proposed
algorithm. The first one is the Iadip print-attack database [1],
and the second one is a self collected antispoofing database
which is more challenging.

A. Experiment on Idiap Print-attack Database

The Indiap print-attack database consists of 400 videos,
including 200 genuine face videos and 200 attacking videos.
The genuine videos are collected in either complex or uniform
background with some illumination changes. The attacking
faces are printed by color laser printer on A4 papers and are
hand held or fixed in front of the camera. In our experiments
we follow the protocol proposed in [1], which selects 30% of



the videos as training set, 30% of the videos as development
set and other videos as test set.

In the experiment we compare our algorithm with the
following two methods:
• Micro-Texture Analysis(MTA): The algorithm was pro-

posed in [6], where multiple LBP features are extracted
and then fed into a stand SVM classifier.

• Partial Least Squares(PLS): The algorithm was pro-
posed in [15], where various features like HOG,
CF,GLCM, HSC are extracted and PLS is used to learn
the weight of each feature.

The results of these methods are shown in Tab. I. From
the table we can see that every single clue can achieve a
relative high performance. Non-rigid motion analysis extracts
information of local facial movement; face-background con-
sistency analysis reveals the relationship between global face
and background motion; image banding analysis examines the
image quality. By fusing multiple clues, we can nearly get
prefect result. Compared with [6] and [15], all the features have
clear semantic meanings and so that has better generalization
capability.

B. Experiment on Self Collected Antispoofing Database

Fig. 8. Example of Self collected database. 1st row: real facial images;2nd
row: spoofing facial images. 1st and 2nd column: original images; 3rd and 4th
column: cropped images.

In this part we collect an antispoofing database to compare
our method with MTA. There are 50 subjects in total, with
videos recorded in two kinds of imaging qualities. For each
imaging quality, every subject has two videos, including one
genuine video and one spoof video. Genuine videos are cap-
tured in laboratory surroundings, while the spoof facial videos
are captured by exhibiting high resolution photos. Compared
with Idiap database, this database is more challenging since it
includes two kinds of imaging qualities. Since all the videos
have very complex background, we only use non-rigid motion
clue and face-background consistency clue in this experiment.

The model is trained on randomly selected 20 subjects, and
the remaining 30 subjects are used for testing. We implement
MTA as [6] except that our cropped face regions are bigger.

The results are shown in Tab. II. We can find that our
proposed two clues and their fusion achieve best performance
on this database. Although [6] uses radial kernel on Indiap

TABLE II
EXPERIMENTAL RESULTS ON SELF-COLLECTED DATABASE

Methods Accuracy
Non-Rigid Detection 81.67%

Face-Background Consistency 90.0%
Fusion of above two clues 91.67%

MTA[6]+Radial Kernel 80.83%
MTA[6]+Linear Kernel 88.83%

database we find that linear kernel is better on our database.
From Tab. II we can find that our proposed methods have a
better performance than MTA.

IV. CONCLUSION

Three novel clues with clear semantic meanings are pro-
posed to handle the face liveness detection problem and
we give methods to efficiently detect the three clues. We
achieve the state-of-the-art results on two different databases
which proves the effectiveness and generalization ability of our
methods. Designing more efficient features to represent more
robust clues on more challenging situations will be our future
work.
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