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Abstract

This paper mainly considers the MeshFace verification
problem with dense watermarks. A dense watermark of-
ten covers the crucial parts of face photo, thus degener-
ating the performance in the existing face verification sys-
tem. The key to solving it is to preserve the ID information
while removing the dense watermark. In this paper, we pro-
pose an improved GAN model, named De-mark GAN, for
MeshFace verification. It consists of one generator and one
global-internal discriminator. The generator is an encoder-
decoder architecture with a pixel reconstruction loss and a
feature loss. It maps a MeshFace photo to a representation
vector, and then decodes the vector to a RGB ID photo. The
succedent global-internal discriminator integrates a global
discriminator and an internal discriminator with a global
loss and internal loss, respectively. It can ensure the gen-
erated image quality and preserve the the ID information
of recovered ID photos. Experimental results show that the
verification benefits well from the recovered ID photos with
high quality and our proposed De-mark GAN can achieve a
competitive result in both image quality and verification.

1. Introduction
In recent years, benefitting from the deep learning[2],

e.g., ConvNet[9], face recognition has made a great
progress[5]. On the LFW benchmark[7], ConvNet contin-
ues to create new records, and even a high verification accu-
racy beyond human[12]. The face verification between ID
photos and daily life photos (FVBID)[20] is a specific task
in face recognition. FVBID is widely used in clearance at
airport, opening bank account from remote, etc.

However, in order to protect the user’s privacy, ID pho-
tos are usually corrupted by random watermarks. Corrupted
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Figure 1. Samples in the MeshFace dataset. From left to right:
(a) ID photo corrupted by watermark, (b) ID photo recovered by
De-mark GAN, (c) original ID photo.

ID photos are called MeshFace [19]. Watermarks cover
some parts of the face and produce a large disturbance in
the pixel space, shown in the top row of Fig. 1. When the
lines of the watermark become dense (e.g., thicker, darker),
many crucial parts of face are covered, shown in the bottom
row of Fig. 1. Due to this, the verification performance of
the ConvNet is severely reduced by the dense Watermarks.
MeshFace verification is becoming a challenging problem
in FVBID. The key to solving MeshFace verification is to
reduce the loss of the ID information, while recovering high
quality ID photos.

Some efforts have been made to solve MeshFace verifi-
cation. Zhang et al. [1] treat this problem as a blind face
inpainting problem, proposing a multi-task SRCNN [2, 4]
to handle the MeshFace verification. This method pre-
serves ID information of MeshFace by detecting the cor-
rupted regions and recovering the corresponding part. How-
ever, the verification performance of ID photos recovered
by SRCNN is sensitive to pixel perturbation. To avoid this,
Zhang et al. [19] propose the DeMeshNet by using a fea-
ture loss to train the Deep FCN (Fully Convolutional Net-
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Figure 2. Architecture of De-mark GAN.It consists of one generator and one global-internal discriminator. A pre-trained Resnet-46 is used
to compute feature loss. In this scheme, the whole face image includes the whole area of face image. The internal face image is a fixed
area (70×70) in the center of face image.

works) model [14]. DeMeshNet recovers a gray ID photo
from MeshFace with a high verification accuracy. ID pho-
tos recovered by the DeMeshNet are robust to perturbation
in pixel space. For these methods, FCN loses some ID in-
formation of MeshFace and can’t achieve a high verification
accuracy. Especially for the dense watermark, the quality
of recovered images becomes worse. In recent years, GAN
[6] is proposed as a generative model which can generative
samples similar to the training data, through an adversar-
ial training between a generator(G) and a discriminator(D).
Many exiting works indicate that GAN has a powerful abil-
ity for image recovering and completing [13, 17].

In this paper, we regard MeshFace recovering as an im-
age generating problem. A GAN model is proposed to solve
it, named De-mark GAN. The structure of De-mark GAN is
shown in Fig. 2. The main objectives of our De-mark GAN
are improving the quality and verification performance of
recovered ID photos. The generator of De-mark GAN is
an auto-encoder structure, which maps MeshFace to a rep-
resentation vector, and then decodes the vector to a RGB
ID photo. The discriminator is a global-internal structure,
which consists of a global and an internal discriminator.
Different from the conventional GAN, De-mark GAN can
control the content of the generated image owing to the
auto-encoder structure generator. The global-internal struc-
ture discriminator of De-mark GAN is more effective than
discriminator of conventional GAN in improving the gener-
ated images quality. De-mark GAN is trained with a com-
bination of a pixel reconstruction loss, global and internal
adversarial losses and a feature loss. Pixel reconstruction
loss is the distance between recovered ID photos and ground
truth ID photos in pixel level. Global and internal adversar-
ial loss are the loss of GAN, ensuring recovered ID photos
are realistic enough. We use a Resnet-46 to extract features

of recovered ID photos and ground truth photos. The fea-
ture loss is the distance between ID photos and ground truth
photos in feature space. This measure improves the verifi-
cation performance and avoids the pixel perturbation.

2. Related Work

2.1. Image recovering

Image recovering refers to the process of reconstruct-
ing a clear image from the corrupted image. Some con-
temporary works[3] are proposed to solve it. These works
have shown that ConvNet has powerful abilities in recover-
ing problem [3]. Zhang et al. [18] propose a multi-task
SRCNN [4] to recover clear ID photos from MeshFace.
They regard MeshFace recovering as a blind face inpaint-
ing problem since the position of corruptions face part is
unknown during test. Zhang et al. [19] propose the De-
MehNet model, which solves MeshFace recovering in fea-
ture space. DeMeshNet recovers clear ID photos with a high
verification accuracy.

2.2. GAN

GAN is a generative model proposed by Goodfellow et.
al [6]. With a minimax two-player game, the generator
can generate samples similar to the training data. GAN is
widely used in images synthesis, style transfer, image re-
covering and completion. More recent works focus on using
images to synthesis images [11]. Tran et al. [16] propose
a DR-GAN(Disentangled Representation Learning GAN)
which can convert profile picture to front picture, improv-
ing the performance pose-invariant face recognition(PIFR).
Li et al. [13] use global and internal adversarial loss to train
GAN, generating the corrupted face part.



3. Method
3.1. Generator

As illustrated in Fig. 2, the generator G is an auto-
encoder structure. The input of G is the MeshFace image.
The encoder of G encodes the MeshFace image to a hidden
representation vector, and the decoder of G generates a clear
ID photo with the hidden representation vector. After the
process of encoding and decoding, the generator preserves
the ID information and removes watermark.

The details of the generator network is shown in the sup-
plementary material. We adopt the residual blocks [9] to
build G. The encoder consists of 6 DownResidual blocks
(the structure of DownResidual block is also illustrated in
supplementary material ) , encoding the 120×120 RGB
MeshFace image to 512-d hidden representation vector.
This vector is then mapped to a second vector through a FC
(fully-connected) layer. The decoder consists of 5 UpResid-
ual blocks , generating a 120×120 RGB non-watermark ID
photo from the second hidden representation vector.

3.2. Discriminator

Mere using of pixel reconstruction loss will lead to a
small error to the average face. Especially for the dense
watermark which covers most part of the face, the gen-
erator generates a blurry and smooth average face, losing
the ID information heavily. To preserve more ID informa-
tion and improve the quality of recovered ID photos, we
apply a global-internal structure in the discriminator. The
global-internal discriminator contains two discriminators,
the global discriminator discriminates the faithfulness of the
entire image recovered by generator. (The details of the
discriminator network is shown in the supplementary mate-
rial.) . The internal discriminator discriminates the realistic
of the internal part of ID photos, including eyes, mouth and
nose. The internal discriminator enforces the generator re-
covering more details in the internal part.

The structure of the global discriminator has 5 Resid-
ual blocks and 5 DownResidual blocks (The structures of
Residual block and DownResidual block are illustrated sup-
plementary material). A fully-connected layer is added after
the residual blocks as a classifier, to discriminate the input
is real or fake. The internal discriminator adopts the struc-
ture of 4 Residual blocks and 4 DownResidual blocks. It
is also added by a fully-connected layer after the residual
blocks as the classifier.

3.3. Feature Loss

ConvNet achieves a high accuracy in image verifica-
tion. However, the ConvNet can be fooled by adding a
tiny amount of noise to original images [15]. Therefore, we
adopt a feature loss as an additional constraint in the train-
ing of the generator. The feature loss reduces the distance

between recovered ID photos and ground truth ID photos in
the feature space, improving the verification performance
on the recovered ID photos. We use a pre-trained Resnet-
46 to extract features. The Resnet-46 model is pre-trained
on MS-Celeb-1M dataset [8], achieving a 99.3% verifica-
tion accuracy on the LFW [10] benchmark. The pre-trianed
Resnet-46 is denoted as φ(·). The x is MeshFace. G(x) is
the ID photo recovered by the generator G. The y is the
ground truth ID photo. The feature loss is defined as the
Euclidean distance between the features φ(G(x)) and φ(y):

L f = ‖φ(G(x))−φ(y)‖2 (1)

3.4. Objective Functions

We adopt a pixel reconstruction loss Lpixel to encourage
generator to generate smooth ID photos with basic face out-
line. The pixel reconstruction loss is the L2 distance be-
tween the recovered ID photo G(x) and the ground truth ID
photo y. The pixel reconstruction can be defined as:

Lpixel = ‖G(x)− y‖2 (2)

To improve the realistic level and the quality of recov-
ered ID photos, we employ the adversarial loss to encour-
age more realistic images to fool the discriminator. It can
be defined as:

La = min
G

max
D

Ey∼pground truth(y)[logD(y)]

+Ex∼pMeshFace(x)[log(1−D(G(x))))]
(3)

In the above formula, the input x is either the global face
image or the internal part of face. When x is global, La
is denoted as Lglobal in Eq. (4). When x is internal, La is
denoted as Linternal . Different from the conventional GAN,
De-mark GAN generates images by decoding the represen-
tation vector, instead of randomly sampling from the Nor-
mal distribution. pground truth(y) represents the distribution
of ground truth ID photos. We apply the feature loss L f in
Eq. (1) to make the recovered photos favorable to the fol-
lowing face verification. We adopt three weights λ1, λ2 and
λ3 to balance the effects of different losses. The entire ob-
jective function is defined as follow:

Loss = Lpixel +λ1Lglobal +λ2Linternal +λ3L f (4)

4. Experiment
4.1. Datasets

In the experiment, we adopt five models to recover ID
photos from MeshFace and compare their verification per-
formance and quality of recovered ID photos. These five
models are trained on the MeshFace dataset, which contains



Table 1. The De-mark GAN and the competitors in our experiments.
Model Generator Discriminator Loss
FCN FCN None pixel reconstruction loss

DeMeshNet auto-encoder None
pixel reconstruction loss,
feature loss

Pixel GAN auto-encoder a global discriminator
pixel reconstruction loss,
global adversarial loss

Pixel De-mark GAN auto-encoder
a global discriminator and
an internal discriminator

pixel reconstruction loss,
global adversarial loss,
internal adversarial loss

De-mark GAN auto-encoder
a global discriminator and
an internal discriminator

pixel reconstruction loss,
global adversarial loss,
internal adversarial loss,
feature loss

(a) (b) (c) (d) (e) (f) (g)

Figure 3. From left to right: (a) MeshFace(120× 120), (b) FCN, (c) Pixel GAN, (d) DeMeshNet, (e) Pixel De-mark GAN, (f) De-mark
GAN, (g) ground truth ID photos. From the top row to the bottom row, the watermark becomes dense. We show more examples in the
supplementary material. Best viewed in color.

more than 80,000 subjects. Each subject has one ID photo
and one daily photo. The ID photos are used for the process
of watermark and de-watermark. The spot photos are used
to perform the face verification.

We randomly sample 10,000 subjects for validation and
10,000 for test . The remaining 60,000 subjects are used as
training set. We evaluate these models in term of recovery
quality and verification accuracy. For evaluating the quality
of recovered ID photos, we choose the value of PSNR (peak
signal-to-noise ratio) and SSIM (structural similarity index)
to which can directly measure the difference in pixel values
and reflect the quality of the recovery ID photo. The high
PSNR and SSIM values generally points to a high quality
of the recover ID photo. For the verification, we adopt the
face comparison protocol of DeMeshNet [19]. Face com-
parison is conducted with cosine similarity in feature space
between all the ID-daily pair. In the experiments, the inputs
of discriminators are the whole face image and the inter-

nal face image. The whole face image includes the whole
area of face image. The internal face image is a fixed area
(70×70) in the center of face image. This area is estimated
by experience. It can cover almost all the facial features.

4.2. Implementation Details

We propose a deep FCN and four GANs in the experi-
ments. The structures of each network are shown in the sup-
plementary material. The losses of each model are shown
in Table 1. For balancing the effects of different losses in
Eq. 4, λ1 = 0.1, λ2 = 1 and λ3 = 0.1 are determined on
the validation set. In the training process, we set the learn-
ing rate to 0.00005 and use RMSprop as the optimization
method. The input image size is 120x120 with RGB chan-
nels. The batch size is 64. The De-mark GAN training takes
approximately 240k iterations to converge. All the experi-
ments are implemented with the Pytorch framework on 3



Table 2. Testing accuracy of verification on the test set of MeshFace.

Method TPR@FPR
=1%

TPR@FPR
=0.1%

TPR@FPR
=0.01%

TPR@FPR
=0.001% PSNR SSIM

corrupted 20.71% 1.42% 0.62% 0.022% 14.33 0.288
FCN 84.22% 59.75% 33.58% 14.56% 23.54 0.883
DeMeshNet 95.02% 85.62% 71.74% 49.75% 21.79 0.904
pixel GAN 75.12% 45.08% 20.76% 7.46% 23.58 0.351
pixel De-mark GAN 92.95% 79.34% 58.65% 33.78% 23.77 0.885
De-mark GAN 96.36% 87.86% 75.12% 49.45% 23.37 0.884

TitanX. The code is realsed on the github∗.

Figure 4. ROC curves on the test set of MeshFace

4.3. Qualitative Evaluation of Recovered Results

Some recovered results are shown in Fig. 3. From top
to bottom, the watermark changes from sparse to dense.
Column (b) contains the results of FCN, which are simi-
lar to each other. The reason is that minimizing the pixel
reconstruction loss can’t preserve the ID information of the
MeshFace. Column (c) contains the results of pixel GAN.
The recovered images are slightly better than those of FCN.
This indicates that the discriminator improves the recov-
ered photos with more ID-specific details. Column (d), (e),
(f) are the results of DeMeshNet, pixel De-mark GAN, and
De-mark GAN. The recovered images are much better than
those of FCN and pixel GAN. For example, in the last row,
the photo belongs to a man wearing a black glasses. From
column (b) to column (f), the black glasses become more
and more clear. It reveals that discriminator and the fea-
ture loss can enhance the details of recovered images. De-
mark GAN can preserve colors and more derails of Mesh-
Face.More recovered results are shown in the supplemen-
tary material. From these recovered images, we can see that
our De-mark GAN is an effective method for removing wa-
termark, especially for the dense watermark .

∗https://github.com/yichuan9527/demark_gan

4.4. Quantitative Evaluation of Recovered Results

In this section, we quantitatively evaluate the recovered
ID photo in term of the values of PSNR, SSIM and ver-
ification accuracy. PSNR and SSIM values are shown in
Table 2. The pixel De-mark GAN model gives the highest
PSNR value and high SSIM value. The internal discrimi-
nator is effective in improving the image quality (pixel De-
mark GAN outperforms pixel GAN owing to the internal
discriminator) . The feature loss causes more noise in re-
covering, while enforcing the generator pay more attention
in details. Due to this, De-mark GAN is worse than pixel
GAN and pixel De-mark GAN in recovering high quality
images, but better in verification performance. The accu-
racy of verification is also shown in the Table 2. TPR@FPR
represent the true positive rates, when false positive is 1%,
0.1%, 0.01% and 0.001%, respectively. The verification on
the raw MeshFace is failed. The accuracy suffers a severe
drop due to the face covered by dense watermarks. After
processed by each of the five models, the verification per-
formance on the recovered ID photos is much better than
MeshFace. The ROC curves are shown in Fig. 4. FCN is
our baseline model. The image quality of pixel GAN is
better than FCN. However, the pixel GAN is worse than
FCN in verification. This reveals that the global discrimi-
nator causes the degeneration of ID information, regardless
of its improvements in PSNR. Compared with pixel GAN,
pixel De-mark GAN benefits from the internal discriminator
which reduces the pixel perturbations. Therefore, the ver-
ification accuracy increases greatly. On the basis of pixel
De-mark GAN, De-mark GAN adopts the feature loss in
training process. De-mark GAN performs better than pixel
De-mark GAN in verification. As shown in Fig. 3, the re-
sults of De-mark GAN has rich details and clear edges. This
improves the verification of De-mark GAN by a large gap
than the others. Compared with the DeMeshNet, De-mark
GAN gives the higher PSNR value and higher verification
accuracy at the FAR points 1%, 0.1% and 0.01% .

5. Conclusion
In this paper, we propose an effective generative adver-

sarial network, named De-mark GAN, for the MeshFace
verification problem with dense watermarks. Under the

https://github.com/yichuan9527/demark_gan


supervision of the global-internal discriminator, De-mark
GAN can recover ID photos with a high quality. Combined
with the generator, the recovered image of De-mark GAN
achieves a high verification accuracy. In the experiments,
we compare the recovered image quality and verification
performance of each model in the test set of MeshFace. The
pixel De-mark GAN achieves the best result in image qual-
ity. Our De-mark GAN achieves the best verification accu-
racy at the FAR points 1%, 0.1% and 0.01%, and competi-
tive results at other points.
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