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Abstract—In this paper, we propose a shortly and densely con-
nected convolutional neural network (SDC-CNN) for vehicle re-
identification. The proposed SDC-CNN mainly consists of short
and dense units (SDUs), necessary pooling and normalization
layers. The main contribution lies at the design of short and
dense connection mechanism, which would effectively improve
the feature learning ability. Specifically, in the proposed short
and dense connection mechanism, each SDU contains a short list
of densely connected convolutional layers and each convolutional
layer is of the same appropriate channels. Consequently, the num-
ber of connections and the input channel of each convolutional
layer are limited in each SDU, and the architecture of SDC-CNN
is simple. Extensive experiments on both VeRi and VehicleID
datasets show that the proposed SDC-CNN is obviously superior
to multiple state-of-the-art vehicle re-identification methods.

I. INTRODUCTION

Vehicles, such as cars, buses, and trucks, have been an
indispensable part of human life, thus vehicle re-identification
plays an important role in video surveillance for public se-
curity [1]. Taking a query vehicle image as an input, vehicle
re-identification aims to search in the surveillance data and
match the same vehicle captured by different cameras. In
practical surveillance scenarios, vehicle re-identification is a
challenging vehicle matching problem in computer vision,
since vehicle images are usually of low resolution and partially
occluded and contain variations of illumination, viewpoint, as
shown in Fig. 1.

Comparing to person re-identification [2–5], vehicle re-
identification is still a frontier research [6]. From the perspec-
tive of released vehicle datasets, VeRi [6, 7] and VehicleID
[8] are two newest large scale vehicle datasets captured
under surveillance scenarios. From the point of vehicle re-
identification methods, many person re-identification methods
are directly utilized to realize vehicle re-identification. For
example, the LOMO [4] and BOW-CN [5] features originally
used in person re-identification are applied as baseline methods
on the VeRi [6, 7] dataset. Moreover, some well known deep
feature learning architectures, such as AlexNet [9], VGGNet
[10] and GoogLeNet [11], are used as feature extractors for
vehicle re-identification. For example, FACT [6] uses AlexNet
[9] to extract features of vehicles, while NuFACT [7] takes

Fig. 1. Classical vehicle samples of the VeRi [7] dataset. Each row denotes
the same vehicle captured under different camera-views.

GoogLeNet [11] as a feature extractor. DRDL [8] utilizes
VGGNet [10] to extract features of vehicles. On the VeRi [6, 7]
dataset, comparing the baseline results that reported in [6, 7],
it can be found that the deep learning based baseline methods
(e.g., FACT, NuFACT and GoogLeNet) obviously outperforms
non deep learning based methods (e.g., LOMO and BOW-CN).

Based on large improvements of recent deep learning net-
works (i.e., VGGNet [10] and DenseNet [12]), we propose a
shortly and densely connected convolutional neural network
(SDC-CNN) for vehicle re-identification in this paper. The
short and dense unit (SDU) is the basic unit of the proposed
SDC-CNN. Each SDU contains a short list of densely con-
nected convolutional layers and each convolutional layer is of
the same appropriate channels, which ensures the number of
connections and the input channel of each convolutional layer
are limited in each SDU. Compared to VGGNet, SDC-CNN
applies the dense connection mechanism to improve the feature
learning ability. While compared to DenseNet, SDC-CNN
does not require 1× 1 bottleneck layers applied in DenseNet,
which ensures SDC-CNN is much simpler than DenseNet.
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Fig. 2. The diagrams of VGGNet (a), DenseNet (b) and the proposed shortly and densely connected convolutional neural network (c).

Therefore, the proposed SDC-CNN is able to combine the
advantages of VGGNet and DenseNet to improve the feature
learning ability.

The major contribution of this paper is to design a shortly
and densely connected convolutional neural network (SDC-
CNN) for vehicle re-identification, which sharply promotes
the vehicle re-identification accuracy. The rest of this paper
is organized as follows. Section II introduces the proposed
shortly and densely connected convolutional neural network
based vehicle re-identification method. Section III presents
experimental results to validate the superiority of the proposed
method. Section IV makes a conclusion for this paper.

II. SHORTLY AND DENSELY CONNECTED
CONVOLUTIONAL NEURAL NETWORK BASED VEHICLE

RE-IDENTIFICATION

A. Shortly and Densely Connected Convolutional Neural Net-
work

As shown in Fig. 2(a) and Fig. 2(b), both VGGNet [10] and
DenseNet [12] emplace multiple same channel convolutional
layers before a pooling layer. However, there are two main
differences between VGGNet and DenseNet. First, VGGNet
[10] uses a short list of convolutional layers and each convo-
lutional is of the same appropriate channels (e.g., c=64), while
DenseNet [12] applies a long list of convolutional layers and
each convolutional layer is of the same thin channels (e.g.,
c=8). Second, VGGNet containing K convolutional layers has
K connections—one between each layer and its subsequent
layer, while DenseNet has K(K + 1)/2 connections. For
each convolutional layer of DenseNet, the feature maps of
all preceding layers are used as inputs, and its own feature
maps are used as inputs into all subsequent layers, which is
the so-called dense connection mechanism in [12]. Based on
this dense connection mechanism, the deeper a convolutional
layer is, the more feature maps it will be used as the input. For

TABLE I
THE PARAMETER CONFIGURATION OF THE PROPOSED SDC-CNN.

Name Channels Scope of
Leaky ReLU

Sub-window
(h× w) Stride

Conv0 64 0.15 3× 3 1
SDU1 64 0.15 3× 3 1
MP1 64 - 3× 3 2

SDU2 128 0.15 3× 3 1
MP2 128 - 3× 3 2

SDU3 192 0.15 3× 3 1
MP3 192 - 3× 3 2

SDU4 256 0.15 3× 3 1
MP4 256 - 3× 3 2

SDU5 320 0 3× 3 1
MP5 320 - 3× 3 2
AP 320 - 1× 4 1

SLN 320 - 4× 1 1

example, the inputs of k−th and (k + 1)−th convolutional
layers hold (k − 1) × c and k × c channel feature maps,
respectively. Therefore, in the DenseNet, a 1 × 1 bottleneck
layer is further applied after a concatenation layer to compress
feature maps, as shown in Fig. 2(b).

Based on the comparison of VGGNet [10] and DenseNet
[12], a short and dense connection mechanism is proposed
to construct the shortly and densely connected convolutional
neural network (SDC-CNN), as shown in Fig. 2(c). SDC-
CNN contains a short list of densely connected convolutional
layers and each convolutional layer is of the same appropriate
channels. Moreover, 1 × 1 bottleneck layers are discarded in
the SDC-CNN, since the number of convolutional layers in
the SDC-CNN is limited. Compared to VGGNet, SDC-CNN
applies the dense connection mechanism to improve the feature
learning ability. While compared to DenseNet, SDC-CNN is
much simpler than DenseNet, by discarding 1× 1 bottleneck
layers.
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Fig. 3. The diagram of the proposed shortly and densely connected convolutional neural network (SDC-CNN) based vehicle re-identification method. MP,
AP and SLN represent max pooling, average pooling and spatial local normalization layers, respectively.

B. SDC-CNN Architecture
As shown in Fig. 3, a shortly and densely connected

convolutional neural network (SDC-CNN) based vehicle re-
identification method is proposed. First, convolutional, batch
normalization [13] and Leaky ReLU [14] layers are sequently
packaged to construct a CBLR block, as shown in Fig. 3
(a). Second, three CBLR blocks are densely connected with
two concatenation (i.e., CAT1 and CAT2) layers to build a
short and dense unit (SDU), as shown in Fig. 3 (b). Third,
one convolutional layer (i.e., Conv0), five SDUs (i.e., SDU1-
SDU5), five max pooling layers (i.e., MP1-MP5), one average
pooling layer (AP) and one spatial local normalization layer
(SLN) [15] are packaged in turn to build the deep feature
learning branch. Moreover, the SDC-CNN applies a siamese
architecture [16], which includes two parameter shared deep
feature learning branches, as shown in Fig. 3 (c).

The parameter configuration of the proposed SDC-CNN
is listed in Table I. The channel numbers of Conv0, SDU1,
SDU2, SDU3, SDU4 and SDU5 are 64, 64, 128, 192, 256 and
320, respectively. The scope of Leaky ReLU layer of SDU5 is
0, the others are 0.15. The sub-window for Conv0 and SDU
represents a filter size, for pooling layers (i.e. MP1-MP5 and
AP) means a pooling window size, and for the spatial local
normalization (i.e. SLN) layer denotes a local normalization
window size. As shown in Table I, Conv0 and five SDUs apply
3 × 3 sized filters. Five max pooling layers use 3 × 3 sized
pooling windows, while the average pooling layer uses a 1×4
sized pooling window. The spatial local normalization layer
utilizes a 4 × 1 sized normalization window. Moreover, only
those strides working on four MP layers are set as 2 pixels,
the others are set as 1 pixel.

C. Objective Function Design
Similar to [17, 18], both the identification and verification

objective functions are jointly applied to supervise the training
process of the proposed network architecture. The same with
[17, 18], the softmax function is utilized to construct the
identification objective function, as follows:

J(H) =
1

K
[

K∑
k=1

C∑
c=1

`(y(k) = c) log
eHc

TX(k)∑C
p=1 e

Hp
TX(k)

] +
1

2
α ‖H‖22 ,

(1)

where H = [H1, H2, ...,HC ] ∈ <d×C is the projection matrix
used to predicate a vehicle’s class label; X(k) is the deep learn-
ing feature of k-th training sample and y(k) ∈ {1, 2, 3, ..., C}
is the corresponding class label. α ≥ 0 is a parameter used
to balance the weigth of the L2 regularization item. K and
C represents the numbers of the training samples and classes.
`(·) is an indicator function.

Moreover, the hybrid similarity function proposed in our
previous person re-identification work [3] is applied to calcu-
late the similarity of an input vehicle pair, which is formulated
as follows:

sk =WT
d |X1

k −X2
k |+WT

m(X1
k . ∗X2

k), (2)

where W =

[
Wd

Wm

]
∈ <d+d is the projection vector used to

calculate the hybrid similarity sk between the deep learning
feature pair X1

k ∈ <d and X2
k ∈ <d; .* denotes the the

element-wise multiplication operation between X1
k and X2

k .
Based the Eq. (2), the log-logistic function [19] is further

used to built the verification objective function for vehicle re-
identification, as formulated in Eq. (3).

V (W ) =
1

N
[
∑N

n=1
log(1 + e−tnsn)] +

1

2
β ‖W‖22 , (3)

where tn ∈ {−1, 1}, if tn = 1 means that X1
n and X2

n

in a deep learning feature pair is with the same class label,
otherwise, the deep learning feature pair is with different class
labels; N is the number of training pair samples; β ≥ 0
is a parameter applied to balance the weight of the L2

regularization item.
Jointing the softmax based identification objective function

(Eq. (1)) and the hybrid similarity function based verification
objective function (Eq. (3)), the final objective function of this
paper is obtained, as follows:

O(W,H) = V (W ) + λ[J1(H) + J2(H)], (4)

where J1(H) and J2(H) are two the same softmax based
identification objective functions assigned to the two parameter
shared feature learning branches, respectively, as shown in
Fig. 3; λ is a constant applied to balance the contribution



of the identification objective functions. Note that the mini-
batch stochastic gradient descent [9] algorithm is applied to
optimize the proposed method in this paper.

III. EXPERIMENT AND ANALYSIS

To validate the superiority of the proposed shortly and
densely connected convolutional neural network (SDC-CNN)
based vehicle re-identification method, it is evaluated and
compared with multiple state-of-the-art methods on two chal-
lenging datasets, VeRi [7] and VehicleID [8].

A. Dataset and Evaluation Protocol

Both VeRi [7] and VehicleID [8] are two large scale datasets
released by the Institute of Digital Media, Peking University.
The cumulative match characteristic (CMC) curve [2, 3] and
mean average precision (MAP) are applied to evaluate the ve-
hicle re-identification performance on the VeRi and VehicleID
datasets.

VeRi is captured by 20 cameras in unconstrained traffic
scenarios and each vehicle is captured by 2-18 cameras in
different viewpoints, illuminations, occlusions and resolutions.
The VeRi dataset is divided into a training subset containing
37,781 images of 576 vehicles and a testing subset with 11,579
images of 200 vehicles. For the evaluation, one can select one
image of each vehicle captured from each camera as the query
and obtain a query set containing 1,678 images. Furthermore,
only the cross-camera vehicle re-identification is evaluated,
which means that if a probe image and a gallery image are
captured under the same camera viewpoint, the corresponding
matching result will be excluded in the final performance
evaluation.

VehicleID is captured during daytime by multiple real-world
surveillance cameras distributed in a small city in China. There
are 221,763 images of 26,267 vehicles in the entire dataset.
Each vehicle is captured only from a front or back viewpoint.
The training subset consists of 110,178 images of 13,134
vehicles. In addition, VehicleID provides three testing subsets,
test800, test1600 and test2400, for evaluating the performance
in different scales. Test800 includes 800 gallery and 6,532
probe images. Test1600 contains 1600 gallery and 11,395
probe images. Test2400 consists of 2400 gallery and 17,638
probe images.

B. Training Configuration

All images in the VeRi and VehicleID datasets are scaled
to 128 × 128 pixels, and each image is further augmented
by horizontal mirror and randomly rotating operations. The
randomly rotating operation is applied to randomly rotate an
image in ranges [−3◦, 0◦] and [0◦, 3◦].The weights in each
layer are initialized with a normal distribution N(0, 0.01), and
the biases are initialized to 0. The L2 regularization weights
α in Eq. (1) and β in Eq. (3) are set to 0.005. The balance
constant λ in Eq. (4) is set to 0.5. The momentums are
assigned as 0.9. Each mini-batch is composed of 64 positive
and 64 negative image pairs, and each image pair is randomly
chosen from the whole dataset. The learning rates start with
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Fig. 4. The CMC curve comparison of the proposed SDC-CNN method and
multiple state-of-the-art methods on VeRi.

TABLE II
THE PERFORMANCE (%) COMPARISON OF THE PROPOSED SDC-CNN AND

MULTIPLE STATE-OF-THE-ART METHODS ON VERI.

Methods MAP Rank=1 Rank=5
SDC-CNN 53.45 83.49 92.55

PROVID [7] 53.42 81.56 95.11
NuFACT + Plate-SNN [7] 50.87 81.11 92.79
NuFACT + Plate-REC [7] 48.55 76.88 91.42

NuFACT [7] 48.47 76.76 91.42
DenseNet121 [12] 45.06 80.27 91.12

FACT [6] 18.75 52.21 72.88
GoogLeNet [20] 17.89 52.32 72.17

VGG-CNN-M-1024 [8] 12.76 44.10 62.63
BOW-CN [5] 12.20 33.91 53.69

LOMO [4] 9.64 25.33 46.48
BOW-SFIT [21] 1.51 1.91 4.53

0.01 and the minimum learning rates are 0.001. The learning
rates are gradually decreased along with the training progress,
that is, if the objective function of Eq.(4) is convergent at
a phase, the learning rates will be decreased to 10% of the
original values.

C. Comparison with State-of-the-art Methods

1) Experiments on VeRi: The performance comparison of
the proposed SDC-CNN and multiple state-of-art methods are
shown in Fig. 4 and Table II. Firstly, from Table II, it can be
found that the proposed SDC-CNN acquires the highest MAP
and rank-1 identification rate. Secondly, compared with three
vehicle license plate aided methods, PROVID [7], NuFACT +
Plate-SNN [7] and NuFACT + Plate-REC [7], the proposed
SDC-CNN method still defeat Plate-REC [7], although it is
beaten by PROVID [7] and NuFACT + Plate-SNN [7] by
a lower rank-5 identification rate. As shown in Table II,
without the help of plates, both NuFACT [7] and FCAT [6]
are outperformed by the proposed SDC-CNN method. Thirdly,
compared with those very deep models, DenseNet121 [12] and
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Fig. 5. The CMC curve comparisons of the proposed SDC-CNN method and multiple state-of-the-art methods on VehicleID Test800 (a), Test1600 (b) and
Test2400 (c), respectively.

TABLE III
THE PERFORMANCE (%) COMPARISON OF THE PROPOSED SDC-CNN AND MULTIPLE STATE-OF-THE-ART METHODS ON VEHICLEID.

Method Test800 Test1600 Test2400 Average
MAP Rank=1 Rank=5 MAP Rank=1 Rank=5 MAP Rank=1 Rank=5 MAP Rank=1 Rank=5

SDC-CNN 63.52 56.98 86.90 57.07 50.57 80.05 49.68 42.92 73.44 56.76 50.16 80.13
DRDL [8] N/A 48.91 66.71 N/A 46.36 64.38 N/A 40.97 60.02 N/A 45.41 63.70
FACT [6] N/A 49.53 67.96 N/A 44.63 64.19 N/A 39.91 60.49 N/A 44.69 64.21

NuFACT [7] N/A 48.90 69.51 N/A 43.64 65.34 N/A 38.63 60.72 N/A 43.72 65.19
GoogLeNet [20] N/A 47.90 67.43 N/A 43.45 63.53 N/A 38.24 59.51 N/A 43.20 60.04

LOMO [4] N/A 19.74 32.14 N/A 18.95 29.46 N/A 15.26 25.63 N/A 17.98 3.76
BOW-CN [5] N/A 13.14 22.69 N/A 12.94 21.09 N/A 10.20 17.89 N/A 12.09 20.56

BOW-SIFT [21] N/A 2.81 4.23 N/A 3.11 5.22 N/A 2.11 3.76 N/A 2.68 3.76
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Fig. 6. The performance (%) comparisons of the proposed SDC-CNN method and multiple state-of-the-art methods on VeRi (a), VehicleID Test800 (b),
Test1600 (c) and Test2400 (d), respectively. R1 and R5 represents rank-1 and rank-5 identification rates, respectively.

GoogLeNet [20], the proposed SDC-CNN method also obtains
better results.

2) Experiments on VehicleID: The performance comparison
results are shown in Fig. 5 and Table III. As shown in
Fig. 5, it can be clearly found that the proposed SDC-CNN
method obviously defeat those state-of-the-art methods on the
VehicleID dataset. From Table III, one can find that deep
learning based methods (i.e., DRDL [8], FACT [6], NuFACT
[7] and GoogLeNet [20]) obviously defeat traditional methods
(i.e., LOMO [4], BOW-CN [5] and BOW-SIFT [21]) on this
large scale dataset. Moreover, compared with those deep learn-

ing based methods, DRDL [8], FACT [6], NuFACT [7] and
GoogLeNet [20], the proposed SDC-CNN method consistently
outperforms them by higher rank-1 and rank-5 identification
rates on Test800, Test1600 and Test2400 datasets, and the best
average result is consequently obtained.

D. Role of Short and Dense Connection Mechanism

Base on comparison results on the VeRi and VehicleID
datasets, the accuracy superiority of the proposed SDC-CNN
method has been validated. In this section, we further evaluate
the role of the short and dense connection mechanism in the



proposed method. To facilitate the description, we abbreviate
the plain case that abandoning the short and dense connection
mechanism while keeping the same basic network architecture
as Plain-CNN.

As shown in Fig. 6, on the VeRi and VehicleID datasets, the
proposed SDC-CNN outperforms Plain-CNN. For example, on
the VeRi dataset, the rank-1 and rank-5 identification rates of
SDC-CNN are 0.59% and 0.95% higher than those of Plain-
CNN, although the MAP of SDC-CNN is a bit lower than that
of Plain-CNN. Moreover, as shown in Figs. 6(b), 6(c) and
6(d), both for MAP, rank-1 and rank-5 identification rates,
the proposed SDC-CNN consistently defeats Plain-CNN on
three testing subset (i.e., Test800, Test1600, Test2400) of the
VehicleID dataset. These results clearly show that the short
and dense connection mechanism is efficient for improving
the vehicle re-identification accuracy.

IV. CONCLUSION

This paper presented a shortly and densely convolutional
neural network (SDC-CNN) for vehicle re-identification. The
proposed SDC-CNN is mainly composed of short and dense
units (SDUs), necessary pooling and normalization layers,
where a short and dense connection mechanism is designed
to make that each SDU contain a short list of densely
connected convolutional layers and each convolutional layer
is of the same appropriate channels. Consequently, the feature
learning ability is improved and the architecture of SDC-CNN
is simplified. Extensive experiments show that the proposed
SDC-CNN is able to achieve better performance than multiple
state-of-the-art vehicle re-identification methods on the VeRi
and VehicleID datasets.
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