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1Center for Biometrics and Security Research & National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences,

95 Zhongguancun Donglu, Beijing 100190, China.
2Machine Vision Group, University of Oulu, PL4500, FI-90014 Oulun yliopisto, Finland.

Abstract

Face recognition from low-resolution images is a com-
mon yet challenging case in real applications. Since the
high-frequency information is lost in low-resolution images,
it is necessary to explore robust information in the low fre-
quency domain. In this paper, we propose an effective local
frequency descriptor (LFD) for low resolution face recog-
nition, by building upon the ideas behind local phase quan-
tization (LPQ) and exploring both blur-invariant magni-
tude and phase information in the low frequency domain.
The proposed descriptor is more descriptive than LPQ with
more comprehensive information. In addition, a statistical
uniform pattern definition method is introduced to improve
the efficiency of the proposed descriptor. Experimental re-
sults on FERET and a real video database show that LFD
is effective and robust for low-resolution face recognition.

1. Introduction
Face recognition, as one of the primary biometrics tech-

nologies, has been widely studied in the recent decades. Al-
though recognition rate in a controlled environment is sat-
isfactory, its performance in real applications is still an un-
solved problem partially due to inadequate image quality.
The report of MBGC [13] also indicates the face recognition
problem with good quality images has been well solved,
while the face recognition performance with bad or low-
quality face images is still far from satisfaction and hence
encourages researchers to pay more attention on these cases.
Recently, more and more face recognition techniques have
been applied to surveillance or intelligent mobile phone ap-
plications. Traditional methods based on high/middle res-
olution face images could not perform well when the face
image captured by a video or web camera is of relatively
low-resolution and/or with out-of-focus blur. It is therefore
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necessary to explore effective descriptors for low-resolution
face recognition.

The low-resolution image discussed here roughly in-
cludes two cases. One is the traditional low-resolution im-
age where the object size in original image is small. An-
other one is a normal size object image with the out-of-
focus or motion blur whose underlying resolution is there-
fore comparatively low [21].

In both low-resolution cases, high-frequency informa-
tion is usually lost. Therefore, some traditional meth-
ods [22, 1] involving detail information of face image
may not be suitable. To deal with this problem, there
are usually two straightforward ways. One is to try
to synthesize the high-resolution images from the low-
resolution ones and the traditional high/middle resolution
face recognition methods could be applied consequently.
Lee et al. [7] used an extended support vector data de-
scription (SVDD) method to synthesize the high-resolution
images with the help of a high-resolution image training
set. Dedeoglu et al. [5] exploited spatio-temporal informa-
tion from video to help hallucinate high-resolution video.
Arandjelovic and Cipolla [3] proposed an extended generic
shape-illumination manifold (gSIM) framework to derive
the high-resolution result implicitly. Nishiyama et al. [14]
tried to recover the original facial images by inferring the
point spread function (PSF) representing the process of blur.
There is also a series of work [4, 19, 12, 11] introducing
how to learn the mapping information from low-resolution
image to high-resolution image in training set which is then
extended into arbitrary images. However, in these meth-
ods, the super-resolution image could be well synthesized
in training set but the quality of the synthesized images of
people outside the training set is often not adequate for face
recognition algorithms.

Another way to deal with the low-resolution problem
is to extract the discriminant information from the low-
resolution images directly. These methods could be divided
into two categories further. One is called holistic method



in which the entire structure of the face image correspond-
ing to the low-frequency domain is explored. Su et al. [17]
utilized FFT technique to extract the global structure infor-
mation of face image for recognition. Li et al. [9] pro-
posed coupled metric learning to transform the high and
low resolution images into a feature space to be classified.
These holistic methods usually require the images to be well
aligned and their performance may be degraded by mis-
alignment often present in real applications. Another cat-
egory is called local feature based methods in which the
local low-frequency discriminant information is extracted
to represent faces and is proved to be more robust to mis-
alignment problem than the holistic ones. One of the recent
methods is named local phase quantization (LPQ) [15] pro-
posed in the context of face recognition by Ahonen et al [2].
It indicates the local phase quantization information in low-
frequency domain is nearly invariant to blur operation so
that it is suitable for low-resolution face recognition. How-
ever, at least two aspects could be improved to deal with is-
sues with low-resolution. First, the magnitude information
is removed in LPQ, but many exitsting works [20, 23] show
the magnitude information is important for face recogni-
tion. Second, LPQ requires the point spread function (PSF)
which causes the blur influence to be positive. Although
the assumption is supposed to be valid in the low frequency
domain, it might not be guaranteed in the real case.

In this paper, we propose a novel Local Frequency De-
scriptor (LFD) for face recognition. Like LPQ, the proposed
method is based on using local frequency information in a
way that makes it robust to blur or low resolution. Unlike
LPQ, this descriptor uses both magnitude and phase infor-
mation, thus carrying more information. Furthermore, the
LFD is computed so that the positive PSF assumption is not
needed for the blur kernel. The representation is therefore
expected to be more robust, and more information on wider
frequency band could be exploited in real applications. In
addition, we also adopt a statistical uniform pattern defini-
tion mechanism to improve the effectiveness and efficiency
of the proposed method.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the methodology of the LPQ method.
Section 3 details the method of LFD utilizing both magni-
tude and phase information. Experimental results are de-
scribed and analyzed in Section 4 and in Section 5, we con-
clude the paper.

2. Review of local phase quantization (LPQ)
Generally speaking, a low resolution image can be con-

sidered to be obtained as a down-sampling operation after a
blurring process on a high-resolution image [6]. In the fre-
quency domain, the blurring process can be represented as
G = F ·H , where G is the Fourier transform of the blurred
image, F the original image, and H the point spread func-

tion (PSF). The magnitude and phase components therefore
satisfy

|G| = |F | · |H|
̸ G = ̸ F + ̸ H

(1)

Assuming that the PSF is centrally symmetric, the trans-
form H will be real valued and the phase of H will equal 0
or π. In the LPQ method, it is assumed that in the very-low
frequency band, the value of H is positive with ̸ H = 0,
so the phase information of G and F is the same and there-
fore a blur invariant representation can be obtained from the
phase.

In a realization, the local frequency could be computed
using a short-term Fourier transform on local M×M neigh-
borhoods Nx at each pixel position x of the image f(x)
defined by

F (u,x) =
∑

y∈Nx

f(x− y)e−j2πuTy (2)

The transform can be efficiently evaluated for all image po-
sitions x ∈ {x1,x2, . . . ,xN} using simply 1-D convolu-
tions for the rows and columns successively.

3. Face description with local frequency analy-
sis

3.1. Local frequency descriptor

In LPQ method, the magnitude information of images is
removed. However, in face recognition domain, many ex-
isting works [20, 23] have shown that magnitude informa-
tion is very critical for face recognition, even more robust
and discriminant than phase information. Simply removing
the magnitude part is likely to lose also meaningful infor-
mation. Therefore, in this work, we try to extract discrim-
inant information in both magnitude and phase domain to
improve the low-resolution face recognition performance.

From Eq. 1, one can see that though the absolute mag-
nitude values of G and F are different, their relative rela-
tionship is still preserved in the blurring process. Given a
fixed frequency u, for image patches i and j, if the magni-
tude response of patch i at frequency u is larger than that of
patch j in F , this relationship will still hold in G because
|G(u)| = |F (u)| · |H(u)|, where |H(u)| is a constant at a
fixed u. That is to say, if F i(u) > F j(u), then we have
Gi(u) > Gj(u) and vice versa. Based on this, we can for-
mulate the magnitude information by describing the relative
relationship among different patches which is also blur in-
variant. Particularly, we adopt a method similar to LBP (lo-
cal binary pattern) to describe the neighboring magnitude
pattern. For position i, denoting the magnitude response at
frequency u in local patch as M(u, i), and the counterparts



of its neighboring patch centered at position k as M(u, k),
we quantize the relative relationship between them as

S(M(u, k),M(u, i)) =

 1 if M(u, k) ≥ M(u, i)

0 if M(u, k) < M(u, i)

The local magnitude descriptor (LMD) code at position
i and frequency u can then be represented as an integer be-
tween 0-255 by combining the eight neighboring relation-
ships as

fLMD(u, i) =
8∑

k=1

S(M(u, k),M(u, i))2k−1 (3)

It is worth noting that the difference of LBP and LMD is
that the original LBP is conducted in image space whereas
in this work, we consider the magnitude response change in
the frequency domain.

Regarding the phase information, LPQ utilizes the ab-
solute phase information to represent faces, and thus the
Fourier transform of the blur kernel must be positive to ob-
tain blur invariance. In real scenario, the assumption that H
is positive may not always hold. In order to derive more ro-
bust face representation, in this work, we propose to model
the phase information in a similar way of magnitude. The
relative relationship of phase information instead of the ab-
solute value is utilized to describe the face images. For po-
sition i, denoting the phase information at frequency u in lo-
cal patch as P (i, u), and the counterparts of its neighboring
as P (k, u), we quantize the relative relationship between
them as

S(P (u, k), P (u, i)) =


1 if P (u, k), P (u, i)

are in the same quadrant

0 otherwise

If two phases lie in the same quadrant, the corresponding
bit is set to 1, otherwise it is set to 0. In this formulation, we
do not need to assume H to be positive any more, since the
sign of H does not affect the relative relationship of phases
defined in our way. We even don’t assume H to be real
value, because the phase difference between P (u, k) and
P (u, i) is the same as the difference between P (u, k)+ ̸ H
and P (u, i) + ̸ H . Thus the relative relationship of phase
information with different patches is irrelevant to the phase
H and this phase description is expected to be more robust
in real applications. The local phase descriptor (LPD) code
of position i at frequency u can then be represented as

fLPD(u, i) =
8∑

k=1

S(P (u, k), P (u, i))2k−1 (4)

An example of LFD (LMD and LPD) coding process is
illustrated in Fig 1, and Fig. 2 shows an example of LFD

for two different blurred images. It shows that the LFD his-
togram is almost blur-invariant and it is suitable for low-
resolution face recognition.

Figure 1. Illustration of the local frequency descriptor.

Figure 2. Blur-invariant property of LFD histograms. (a)-(c) orig-
inal image and its corresponding LFD histograms. (d)-(f) Blurred
low-resolution image and its corresponding LFD histograms.

3.2. Statistical uniform pattern

In [1], researchers propose uniform pattern mechanism
for LBP code which is robust to noise and improves the
recognition performance. In LBP code, the uniform pat-
terns are defined as such code that at most two bitwise tran-
sitions from 0 to 1 or vice versa occur when the binary string
is considered circular. It is based on the observation that
there are a limited number of transitions or discontinuities
in the circular presentation of the 3 × 3 texture patterns.
Therefore, the uniform patterns occupy a vast majority pro-
portion of all LBP patterns in local image texture.

In this paper, we adopt a more general strategy as
in [10, 8] and define the uniform pattern via statistical anal-
ysis, according to the occurrence percentage instead of the
number of 0-1 and 1-0 transitions for different codings.



(a) (b)

Figure 3. Distributions of LMD (a) and LPD (b) codes on FERET
training set.

Denote a LMD or LPD face image by f(x, y) to indi-
cate the coding value in position (x, y) of the i-th image.
The occurrence distribution histogram for n face images is
computed as

H(l) =
n∑

i=1

∑
x,y∈f

I(f(x, y) = l), l = 0, 1, · · · , 255 (5)

where I(·) ∈ {0, 1} is an indication function of a boolean
condition. The LMD and LFD codes distributions, calcu-
lated on the training set of FERET database are shown in
Fig. 3.

The histogram is then sorted according to the occurrence
percentage. In this paper, we define the uniform patterns
in an iterative way inspired by Huffman coding source re-
ductions [6]. In each step, the patterns corresponding to the
two smallest occurrence percentage collapse into a single
one and then the histogram is resorted. Suppose we origi-
nally have K bins, after T iterations, there are K−T labels
left. In this work, K equals to 256 and T can be assigned
arbitrarily from 0 to 255. Large K − T value will result
in huge feature dimension while small value may lead to
the loss of discriminative information for recognition. In
this work, we finally select 16 uniform patterns for LMD
and LPD respectively, considering the trade-off between the
recognition accuracy and the computational cost.

Like the procedure of [1], after the LMD or LPD label-
ing, the face image is divided into non-overlapped rectangu-
lar regions each of which is used to compute a histogram of
labels independently, and finally, these histograms are con-
catenated together to build a global face description.

4. Experiments

The effectiveness of the proposed LFD is compared with
two state-of-the-art descriptors (LBP and LPQ) for low-
resolution face recognition. Experiments with simulated
and real low-resolution data are designed to evaluate dif-
ferent methods.

4.1. Simulated experiment

We conduct some simulated low-resolution experiments
on FERET database [16]. The FERET database consists
of one gallery set and four probe sets (fb, fc, dup1, dup2).
There are 1196 images of 1196 persons in the gallery set and
the four probe sets contain 1195, 194, 722 and 224 images
respectively. Two experiments are designed to simulate dif-
ferent low-resolution factors. The resolution of images in
gallery set is kept to be 88×80 in following experiments. In
the first one, for the probe images, four resolutions, 88×80,
66×60, 44×40, and 33×30, are used to evaluate the differ-
ent methods. For resolutions below 88× 80, the images are
first down-sampled into certain resolution and up-sampled
to 88×80 to be recognized. Fig. 4 shows some cropped face
examples with different resolutions. In real application such
as surveillance scenario, there is also motion blur that make
the image low-resolution. Therefore, in the second experi-
ment, we simulate the motion blur problem in probe set by
using the shift-invariant linear blur PSF as H(u, v) = 1/Z
if ||(u, v)||2 < b and v = utanθ, otherwise H(u, v) = 0,
where b is the length of camera motion, θ is the angle and Z
is a normalization term. In this experiment, b is set to be 3,
three angles (θ = 0, 0.25π, 0.75π) are selected to simulate
different directions of motion. Fig. 5 shows the synthesized
motion blurred images with different directions.

In all experiments, the proposed LFD was compared
with LBPu2

8,1 [1] and LPQ [2]. For LFD and LPQ, four
frequency points u1 = [a,0]T,u2 = [0,a]T,u3 =
[a,a]T,u4 = [a,−a]T are used and the parameters were
set to be M = 7, a = 1/7 which were used in [2]. The
LBP, LPQ and LFD histogram features were extracted from
the non-overlapping rectangular regions of the size 8× 8.

Fig. 6 and 7 illustrates the face recognition rates on four
probe sets in two simulated cases respectively. From the
result, one can see that

1. In fb set, where the images are captured under good
condition, the performance of LPQ and LFD is very
similar in all cases and the LPQ achieved the highest
recognition rate.

2. In fc, dup1 and dup2 probe sets, the performance of
LFD is mucher better than that of LBP or LPQ. Es-
pecially in fc, considering that illumination variation
mainly lies in low frequency band, the LFD is proved
to be able to alleviate the affect of lighting change and
extract the discriminant information effectively, which
is very encouraging for low-resolution face recogni-
tion.

3. As we know, the face images are always affected by
various factors such as illumination, expression, aging
etc. The good performance of LFD in all four probe
sets with different low-resolution cases shows that the



Figure 4. Cropped FERET face example images. From top to
down, the resolution is 88x80, 66x60, 44x40, 33x30 respectively.

(a) (b) (c) (d)

Figure 5. Examples of face images with motion blur. (a) Original
image, (b) θ = 0, (c) θ = 0.25π, (d) θ = 0.75π.

proposed LFD method is robust, effective and practical
for low-resolution face recognition in real world.

4.2. Experiment with real low-resolution data

The video database used in this experiment was collected
by our group. Two image sets (noted here as set A and set
B) were collected by using different video cameras. Set A
contains 2400 images from 300 subjects with 8 images per
person and set B contains 1016 images from 127 subjects
with 8 images per person. The subjects in set B are all in-
cluded in set A. All images are cropped into 88 × 80 ac-
cording to the automatically detected eye coordinates by an
AdaBoost based eye detector [18]. Some cropped example
images are shown in Fig. 8. This database is very challeng-
ing. There are blur, accessory, lighting and pose variations
and the quality of images captured from different cameras
is different. All of these increase the difficulties of recogni-
tion.

Figure 6. Recognition rates on four probe sets with four resolutions
on FERET.

Figure 7. Recognition rates on four probe sets with different mo-
tion blur on FERET.

In this experiment, we randomly select 2 images per per-
son from set A to consist the gallery set and use the set B
as the probe one. Therefore, it is a cross-matching between
two data captured by different cameras.

Table 1 shows the recognition results for different de-
scriptors on the real video database. Both the new magni-
tude (LMD) and phase (LPD) descriptor show very good
performance. The proposed combined LFD descriptor,



Figure 8. Cropped face example images from video database. The
first row is the image from set A and the second is from set B.

Table 1. Recognition rates on video database.
Method Rec. rate

LBP 0.4117
LPQ 0.5754
LMD 0.6538
LPD 0.6796

LFD (LMD+LPD) 0.6895

which encodes more information in magnitude and phase
domains, significantly outperforms the LBP and LPQ meth-
ods by improving the recognition rate by 67.5% and 19.8%,
respectively. There is great potential for LFD to be applied
in low-resolution face recognition in real applications.

5. Conclusions
In this paper, we have proposed a new approach to use lo-

cal phase and magnitude information for robust face recog-
nition. The representation is blur-invariant and is suitable
for low-resolution face recognition. Experiments on simu-
lated and real databases show the effectiveness of the LFD
in low-resolution face recognition. The future work is to
combine the LFD with discriminant learning method to re-
duce the feature dimension and improve the performance
further.
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