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Learning Discriminant Face Descriptor

Zhen Lei, Member, IEEE, Matti Pietikdinen, Fellow, IEEE, and Stan Z. Li, Fellow, |[EEE

Abstract—Local feature descriptor is an important module for face recognition and those like Gabor and local binary patterns (LBP)
have proven effective face descriptors. Traditionally, the form of such local descriptors is predefined in a handcrafted way. In this
paper, we propose a method to learn a discriminant face descriptor (DFD) in a data-driven way. The idea is to learn the most
discriminant local features that minimize the difference of the features between images of the same person and maximize that
between images from different people. In particular, we propose to enhance the discriminative ability of face representation in three
aspects. First, the discriminant image filters are learned. Second, the optimal neighborhood sampling strategy is soft determined.
Third, the dominant patterns are statistically constructed. Discriminative learning is incorporated to extract effective and robust
features. We further apply the proposed method to the heterogeneous (cross-modality) face recognition problem and learn DFD in a
coupled way (coupled DFD or C-DFD) to reduce the gap between features of heterogeneous face images to improve the
performance of this challenging problem. Extensive experiments on FERET, CAS-PEAL-R1, LFW, and HFB face databases
validate the effectiveness of the proposed DFD learning on both homogeneous and heterogeneous face recognition problems. The
DFD improves POEM and LQP by about 4.5 percent on LFW database and the C-DFD enhances the heterogeneous face

recognition performance of LBP by over 25 percent.

Index Terms—Face recognition, discriminant face descriptor, image filter learning, discriminant learning, heterogeneous face

recognition

1 INTRODUCTION

FACE recognition has attracted much attention due to the
potential value for practical applications and its
theoretical challenges. As a classical pattern recognition
problem, it mainly involves two critical problems—feature
representation and classifier construction. Most of the
existing works focus on these two aspects to enhance the
face recognition performance.

In many real applications, face recognition is a multiclass
classification problem with uncertain class number. For
example, in a face identification system, the number of face
classes equals to the number of registered subjects. When a
subject is added, the number of classes is changed. This is a
characteristic of face recognition different from the general
object recognition problems, where the number of classes is
usually fixed. The face recognition algorithms are required
to adapt to the variation of class numbers. Therefore,
classification mechanisms successfully applied to general
object recognition may not be applicable to face recognition.

Among various classification methods, the nearest
neighbors (NN) classifier and its variants, i.e., nearest
feature line [1] or nearest subspace [2], are the most
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popular methods in face recognition. In [3], Moghaddam
et al. convert the face recognition into a two-class
classification problem by constructing the intra and inter-
face spaces. The intraspace is the difference between two
images from the same person and the interspace is the
difference between two images from different people. In
this way, many two-class classifiers like Bayesian, SVM [4],
Adaboost [5], and so on can be applied. Recently, Ma et al.
[6] propose a sparse representation classifier (SRC), which
formulates the probe image as a linear combination of
gallery images. The combination coefficients corresponding
to images from the same subject are set to be larger than
others, and hence, the probe image can be recognized. For
other works on classifier learning, please refer to [7].

Besides the classifier learning, feature representation is
another important problem in face recognition. The face
images in real world are affected by expressions, poses,
occlusions, and illuminations; the difference of face images
from the same person could be even larger than that from
different ones. Therefore, how to extract robust and
discriminant features that make the intraspace compact
and enlarge the margin between different people is a critical
and difficult problem in face recognition.

Up to now, many face representation approaches have
been introduced, including subspace-based holistic features
and local appearance features [8], [9]. Typical holistic
features include the well-known principal component
analysis (PCA) [10], linear discriminant analysis (LDA)
[11], independent component analysis (ICA) [12], and so on.
PCA provides an optimal linear transformation from the
original image space to an orthogonal eigenspace with
reduced dimensionality in sense of the least mean square
reconstruction error. LDA seeks a linear transformation by
maximizing the ratio of between-class variance and within-
class variance. ICA is a generalization of PCA, which is
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Fig. 1. Three-step way to extract LBP-like feature.

sensitive to the high-order correlation among the image
pixels. Yan et al. [13] reinterpret the subspace learning from
the view of graph embedding so that various methods, such
as PCA, LDA, LPP [14], and so on, can all be interpreted
under this framework. Recently, many advanced subspace
analysis methods [15], [16] that address the problem of
small sample size (SSS) are proposed to enhance the
discriminative ability of the learned subspace.

Local appearance features, as opposed to holistic features
like PCA and LDA, have certain advantages. They are more
stable to local changes such as expression, occlusion, and
inaccurate alignment. Gabor [17], [18] and local binary
patterns (LBP) [19] are two representative features. Gabor
wavelets capture the local structure corresponding to
specific spatial frequency (scale), spatial locality, and
selective orientation. It has been demonstrated to be
discriminative and robust to illumination and expression
changes. Local binary patterns that describe the neighbor-
ing changes around the central point are a simple yet
effective way to represent faces. It is invariant to monotone
transformation and is robust to illumination changes to
some extent. The combination of Gabor and LBP further
improves the face recognition performance. A lot of work
has been proposed in this branch [20], [21], [22].

Recently, Kumar et al. [23] have proposed attribute and
simile representations for face recognition. The attribute
means the describable aspects of visual appearance (like
gender, race, and age) and the binary classifiers are used to
recognize them. For simile, the test image (or regions of the
image) is compared to the images (or regions) in a reference
set and the similarity between them is used as the face
representation. The attribute and simile are finally com-
bined to form a compact face description. Berg and
Belhumeur [24] build a large and diverse collection of
“Tom-versus-Pete” classifiers to extract discriminative
attributes to represent face images. The attribution-based
representation is shown to be effective and robust to face
recognition in the real world.

In this work, we focus on LBP-like feature extraction
and propose a novel discriminant face descriptor (DFD)
that introduces the discriminant learning into feature
extraction process.

1.1 Related Work

Generally, the LBP-like feature extraction can be decom-
posed into three steps (Fig. 1). First, an image filter is
applied to reduce the noise affection and enhance the useful
information. Second, certain pixel patterns on the filtered
image are sampled and compared. Third, the encoded
image is derived based on the pixel comparison results and
encoding rules. In original LBP [19], the first filtering step is
skipped and the LBP feature is extracted from the original

image directly. The neighboring pixel values are compared
with the central point and the LBP feature is encoded with a
uniform pattern definition.

Many of the LBP variants [25] can be categorized to
improve the original LBP at these three steps. In MBLBP
[26], multiscale mean filters are applied at the first step,
followed with the similar operation of LBP. In LGBP [20],
HGPP [21], GV-LBP [22], a bank of Gabor filters with
different scales and orientations are first applied and the
local pattern is encoded from the Gabor magnitude/phase
responses. Sobel-LBP [27] first extracts the gradient in-
formation from the original image and then LBP operator is
applied to the gradient response images. In these methods,
all the image filters are defined in a hand-crafted way.

There are also other variants focusing on the optimal
neighborhood sampling and the encoder learning. Cao
et al. [28] utilize unsupervised methods (random-projec-
tion tree and PCA tree) to learn the encoder and the PCA
dimension reduction method is applied to get a compact
face descriptor. Guo et al. [29] propose a supervised
learning approach based on Fisher separation criterion to
learn the encoder of LBP. The authors of [30] propose to
construct a decision tree for each region to encode the
pixel comparison result and in [31], a heuristic algorithm is
used to find the optimal pixel comparison pairs for
discriminative face representation. In local quantized
patterns (LQP) [32], researchers adopt vector quantization
to encode the local binary/ternary pattern values. TP-LBP
and FP-LBP [33] adopt a specific sampling way to encode
the relationship of patch difference. In object recognition, a
number of encoding methods like sparse coding [34] and
discriminant dictionary learning [35] are proposed to
extract robust features.

As summarized, most LBP variants try to improve the
ordinary LBP at one of the three steps. Most learning-based
descriptors [28], [30], [31] focus on the improvement at the
second or the third step. There is little work on image filter
learning for feature extraction. The most related work is
the “Volterrafaces” [36] in which various “Volterra”
kernels are learned and a vote mechanism is adopted for
face recognition.

1.2 Our Contribution

The proposed discriminant face descriptor improves the
discriminative ability at all three steps of the LBP-like
feature extraction. Fig. 2 illustrates the pipeline of
the proposed method. First, it learns a discriminative image
filter to enhance the effectiveness of the descriptor. Second,
it adopts a soft way to determine the optimal neighborhood
sampling strategy to best differentiate face images. Third, it
learns dominant patterns in an unsupervised way to
enhance the representative ability of the descriptor. By
incorporating these improvements at three steps, a dis-
criminant face descriptor is constructed. In the testing
phase, after we encode the face image with the learned
DEFD, histogram features that describe the co-occurrence of
encoded values are then extracted as the final face
representation. Some preliminary results of this work have
been published in [37], [38].

The main contributions of this work are summarized
below:
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Fig. 2. The pipeline of discriminant face descriptor learning. In the learning phase, after extracting the pixel difference matrix (PDM), the discriminant
learning is adopted to learn the discriminant image filters and the optimal neighborhood sampling strategy. The PDM is then projected and regrouped
to form the discriminant pattern vector. The dominant patterns are finally obtained by using unsupervised clustering method. In the face labeling
phase, for each pixel in face image, the PDM is first extracted and the discriminant pattern vector is then obtained by projecting the PDM using the
learned discriminant image filters and the neighborhood sampling strategy. The pixel is finally labeled to the ID of dominant pattern, which is the one

most similar to the discriminant pattern vector.

1. A discriminant image filter learning method is
proposed. With the learned image filters, more
useful face information helpful for face recognition
is explored.

2. The optimal neighborhood sampling strategy in
LBP-like feature extraction is learned. Different
from the previous work, we determine the best
sampling method in a soft way, in which a soft
sampling matrix (SSM) is learned to differentiate
the importance of each neighbor. This soft sampling
strategy is more flexible to extract the discriminant
face patterns.

3. By incorporating the discriminant image filter and
the optimal soft sampling learning, a discriminant
face descriptor is proposed with the formulation and
solution. Moreover, local DFDs are learned for
different parts of faces to improve the discriminative
power and obtain more precise image description.

4. The coupled discriminant face descriptors (C-DFD)
is proposed to address the heterogeneous face data.
The coupled discriminant filters and the optimal soft
sampling strategy are learned iteratively to obtain
the common discriminant face representation.

2 DiscRIMINANT FACE DESCRIPTOR LEARNING

The motivation of DFD learning is directly related to
achieving high face recognition accuracy, that is, to reduce
the intradifference and enlarge the interdifference of face
images, so that they can be correctly classified. To achieve
this goal, we incorporate the discriminant learning into an
LBP-like feature extraction process. Specifically, the dis-
criminant image filters learning and the optimal soft
neighborhood sampling are proposed to enhance the
essential face patterns and suppress the external variations.
In the following, we introduce the formulation of discrimi-
nant image filters learning, optimal soft neighborhood
sampling strategy, and its optimization to learn an effective
DFD from face images. Some abbreviations used in this
paper are summarized in Table 1.

2.1 Discriminant Image Filters Learning

Given a face image I, its filtered image is denoted as f(I).
In this work, we apply LBP-like operator on filtered image,
where the neighboring pixels are compared with the
center. For position p, the pixels in neighboring region R?
are grouped as df(I)" = [f(I)"" — f(D)P, f(D)* — F(I)",...,
F()P — f(I)™], where f(I)" is the pixel value of filtered
image at position p and f(I)” denotes the pixel value of
filtered image at position p;. {p1,p2,...,ps} € R are the
neighbors of position p and d is the number of neighbors.
The vector df(I)’ is named pixel difference vector (PDV) in
the following. Intuitively, the purpose of discriminant
image filter learning is to find a filter f so that after the
image filtering, the PDVs of images from the same person
are similar and the differences of PDVs from different
people are enlarged. Following Fisher criterion [5], it can be
formulated to maximize the ratio of between-class scatter S
to the within-class scatter S,. Let df(I);; be the pth PDV of
the jth sample from class i; the between-class scatter S; and
within-class scatters S/, can be defined as

L C N
, T
S =22 > (df(Df = df(m)!) (df @) — df(m)7)"
i=1 j=1 p=1
L N 7
Sy =Y Ci(af(m)! — df(m)")(df(m)! —df(m)’)",
i=1 p=1
(1)
TABLE 1
Summary of Some Abbreviations Used in This Paper
Abbrev. Full Name
PDV Pixel Difference Vector
PDM Pixel Difference Matrix
SSM Soft Sampling Matrix
DPV Discriminant Pattern Vector
DFD Discriminant Face Descriptor
C-DFD | Coupled Discriminant Face Descriptor
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Fig. 3. An example of pixel difference matrix extraction for discriminant
face descriptor learning. The image filter size is 3 x 3 and the
neighboring radius is 1. For every central patch, eight neighboring
patches are compared, respectively, and then grouped to form the pixel
difference matrix.

where L is the number of face classes and C; is the number
of samples from the ith class. df(m)? is the mean vector of
pth PDVs on filtered images from the ith class and df(m)’ is
the total mean vector of pth PDVs over the sample set.

Under linear assumption, suppose the image filter vector
to be w, and the value of filtered image at position p can be
represented as f(I)” = w’I?, where I” denotes the image
patch vector centered at position p. Similarly, the PDV
df(I)? can be represented as df(I)’ = w” dI”. Substituting it
into (1), we get

L C N ,
:ZZZwT d]p— {')(dlf’l—dmf) w,

i=1 j=1 p=1

LN (2)
= ZZCIU)T dm? — dm?) (dm? — dmp)Tw,

i=1 p=1

where dI}; is pixel difference matrix extracted from the
jth image of class ¢ at position p, dm? is the mean PDM for
the ith class, and dm? is total mean PDM at position p. Fig. 3
shows an example of how to extract PDM from each pixel.

2.2 Optimal Neighborhood Sampling Strategy

In ordinary LBP, the neighboring pixels are compared with
the center and the resulted binary values are then converted
into a decimal value. The neighboring pixels in LBP are
treated equally. However, different neighboring pixels
could be of different contribution to face description.
Careful selection of neighboring pixels may help to improve
the face recognition performance. In [31], researchers
adopted a heuristical way to find the best pixel sampling
pairs in local regions. In this work, we propose a soft way to
determine the optimal neighborhood sampling strategy.
Different from previous methods, we try to learn a weight
matrix corresponding to each PDV, named soft sampling
matrix. Each column of SSM is a soft sampling vector,
which is a weight assignment for the elements in PDV. The
number of column is set empirically to extract sufficient
complementary information. Fig. 4 illustrates how the soft
neighborhood sampling strategy works with SSM. By
multiplying the PDV with its corresponding SSM, the
neighboring pixels in PDV are assigned to different weights
that reflect the contribution difference. In this way, the

Fig. 4. The difference of the proposed soft neighborhood sampling
strategy and the ordinary LBP sampling method. In ordinary LBP, the
compared string is binarized and converted into a decimal value (i.e.,
LBP code). In the proposed method, the extracted pixel difference
vector is multiplied with an optimal learned soft sampling matrix to
obtain the discriminant pattern vector, which will be further encoded
with dominant patterns.

pixels helpful to face recognition are enhanced and
irrelevant ones are suppressed. The derived vector can be
further encoded with dominant patterns. Suppose the SSM
as v = [vy,v,.. .,vd]T, where d is number of neighboring
pixels in local region, after weight combination, the resulted
vectors from the same person are supposed to be consistent
and those from different people are different. By appro-
priate formulation, this problem can also be formulated as
maximizing the ratio of between-class scatter S, and within-
class scatter S, which are computed as follows:

L C N .
S =202 D () = dfem)you (df (D) = dfm)!)"
; J;V = )
=ZZ@ — df(m)")vu” (df (m)! — df(m)’)" .
(3)

2.3 Optimization

By combining (2) and (3), the between-class scatter S, and
within-class scatter S,, can be reformulated as

L N
w Z ZU)T de - )’U’UT
i=1

Jj=1 p=1
L N
Z Z C’,wT dm,{-’ - dmp)va (dmﬁ' - dm")Tw.
i=1 p=1

Ci

T
(d[f’j —dm?)" w,

(4)

Following Fisher criterion, the objective of DFD learning
is to find image filter vectors w and soft sampling matrix v,
so that the ratio of between-class scatter matrix to the
within-class scatter can be maximized. It is easy to find that
this formulation is similar to the two-dimensional linear
discriminant analysis (2D-LDA) [39], where the PDM is the
basic matrix to compute the between and within-class
scatter and the left (discriminant image filter) and right
projections (soft sampling matrix) are required to be
computed. Like 2D-LDA, we solve the above optimization
problem in an iterative way. At each iteration, one of the
variables w, v is fixed and the optimal solution for another
one is derived by solving the generalized eigenvalue
problem. As indicated in [39], one loop of iteration is
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enough to achieve good performance while reducing the
computational cost. The whole algorithm of DFD learning is
illustrated in Algorithm 1.

Algorithm 1. Discriminant face descriptor learning

algorithm.

Input: A set of sampled patch difference matrices (PDMs)
{arf,i=1,...,L,j=1,...,Ci,p=1,...,N}, where
dl;; € Rt*%, d, is dimension of image patch and d» is
the number of neighbors for each PDM. The reduced
dimension d{, d, and the number of iteration T are set
in advance.

Output: Image filter projections w € R%*% and soft
sampling matrix v € R%*%, where d; and d, are the
reduced dimension.

1: Initialize: w =1 and v =1, where I is the identity
matrix.
2: fort=1,...,T do:
3:  a) Compute within and between-class scatter
matrices:

S = Lt Xt 0 (A = dm}wo (dlfy — dm)";
St = 25:1 Z;V:l Ci(dm? — dmP)voT (dm? — dmp)T;
4:  b) Solve the generalized eigenvalue problem and

obtain the eigenvectors wy with d| largest eigenvalues.
Slw = ASLw

51 o w—wy
6:  d) Compute within and between-class scatter
matrices

S = Yoy Yot S (AL —dm]) T ww (dIf; — dmf);
S = Xita Xy Cildm — dm?) w (dmf) — dm?);

7:  e) Solve the generalized eigenvalue problem and
obtain the eigenvectors v, with dj largest eigenvalues.
S2u = \S2v

8: f) v — vy

9: end for

10: Return: w and v

2.4 Dominant Patterns Learning

With the learned image filters and soft sampling matrix, the
PDM can be projected onto a discriminant subspace.
Suppose we finally preserve d; image filter vectors and d;
soft sampling vectors, after left and right projections, the
PDM is projected onto a d; x dj matrix. This matrix is then
transformed into a vector of dj x d; dimension, which is
named discriminant pattern vector in the following.
Here, we simply use the unsupervised clustering method
(K-means) to learn the dominant patterns. Recent complex
methods like random-tree [28] and the dominant pattern
determination method used in [29] were also tried. Because
of the discriminant learning in DPV extraction, there is no
significant difference in performance among various domi-
nant learning methods and the K-means is adopted due to
its simplicity.

2.5 DFD-Based Face Representation

The structures and useful information for local face regions
are different. To describe the face image precisely, we
propose to learn a local DFD for each local face region,

293
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Fig. 5. The process of DFD-based face representation and recognition.

respectively. In feature extraction phase, a face image is first
divided into multiple regions. The pixels in each region are
encoded according to the locally learned DFD (including
discriminant image filters, optimal soft sampling matrix,
and the dominant patterns), respectively. For each pixel, the
extracted PDM is projected with the learned image filters
and soft sampling matrix. The resultant submatrix is then
transformed to form a DPV. Finally, the pixel is labeled with
the ID of dominant pattern which is the most similar with
the extracted DPV.

After the face image labeling, histogram-based features in
each region that describe the co-occurrence of patterns are
extracted and concatenated. Directly matching metrics like
L1/L2 distance and histogram intersection can be adopted to
measure the dissimilarity of different face images. Dimen-
sionality reduction technique like PCA can also be applied to
further improve the matching efficiency. The process of
DFD-based face representation is illustrated in Fig. 5.

3 CoupPLED DISCRIMINANT FACE DESCRIPTOR FOR
HETEROGENEOUS IMAGES

Recently, more and more attention has been paid to
heterogeneous face image matching problem. Heteroge-
neous faces are defined as faces which are captured in
different environments or by different devices, for example,
visual (VIS) versus near infrared (NIR), VIS versus Sketch,
and so on, which are common in many real applications like
law enforcement and video surveillance. Previous works
mainly focus on transforming the heterogeneous face
images into the same modality for matching or developing
an advanced classifier that is robust to the modality gap of
extracted features.

In this work, we try to reduce the modality gap at the
feature level to simplify the heterogeneous face recogni-
tion problem while traditional face descriptors could fail
to reduce the appearance gap. From the three-step view
(Fig. 1), Zhang et al. [40] have proposed a coupled
encoding method at the third step to reduce the difference
of heterogeneous features. Analogized from the DFD, we
propose to learn a coupled discriminant face descriptor by
incorporating discriminative learning into the three steps
of feature extraction. Specifically, we adopt a coupled
image filter pair to model the difference of the images
from different modalities. After the coupled image filter-
ing, the responses of heterogeneous images from the same
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person are as similar as possible, and therefore, the
appearance gap of different modalities is reduced.

As mentioned above, the objective of DFD learning is to
extract discriminative features that are robust to image
variations. Similar to DFD learning for homogeneous face
images, the purpose of C-DFD is to reduce the difference of
PDVs for the heterogeneous images from the same
person and meanwhile enlarge that from different subjects.
Let IV and I be the face images with two modalities
(e.g., VIS and NIR modalities) and their filtered images are
denoted as f(1') and f(I'), respectively. Suppose df(I")};
and df(I')7; are the pth heterogeneous PDVs of jth sample
pair from the ith class. Following Fisher criterion, the
objective of coupled image filters learning can be formu-
lated to maximize the ratio of between-class scatter and
within-class scatter, which can be formulated as

Sw — SXV 4 S]\HW 4 SVM 4 S]WV
Sb — SIYV + S\H\I + SV\[ + S]\[V,

VM QVM
Sb ’ S w

()

where are the between- and within-class matrices
between modality V' and M, which are defined as

L N
R
i=1 p=1

SVJ\I

&.
Mz %3 EM@

= df(m™)})(df(I")y;

(6)

Sy — Z — df M) df Y

i=1 p

—df(m")")",

where df(I1");, df(I™), df(m"), df(mM), df(m"),
df(mM)? are defined similarly as in Section 2.1 and the
superscript ¥ or ¥ is the modality indicator. By introducing
the optimal soft sampling matrix learning as in Section 2.2,

the S and SY can be reformulated as

I
—

L G N
SVM Z Z df(rvy, - df(m),)"
l d IV 4 m]\[p T7
v (df (1Y)} — df(m™)) .
e ZZC af(m"); — dfmy)
o (df(m")Y 7df(mf\1)p)T.

Differently from Section 2.1, in this part, we learn a
couple of discriminant image filters to better deal with the
heterogeneous face appearance variation. Under linear
assumption, the filtered images f(I") and f(I) at position
p can be formulated as f(IV)” = (w")' V" and f(IM)" =
(wM)T1MP, respectively, where IV” and I" are original
image patch vectors Centered at position p for heteroge-
neous image pair and w" and w* are coupled image filter
vectors. As in Section 2.1, we obtain the optimal solution of
wM, w", v in an iterative way. First, the soft sampling matrix
v is fixed, and the (5) can be formulated in the form of
Sw=w" 3 ey Adw and Sy =w' 37 iy Afw (see
Appendix A, which can be found in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAML2013.112), where w = [w";w"]. The

solution w to the problem of maximizing S;/S, can be
obtained by solving the generalized eigenvalue problem
Sijetvan A w—)\Z”e{VM}A w with the eigenvectors
corresponding to the leading eigenvalues. The coupled
discriminative filters w" and w* can then be obtained by
splitting the w appropriately.

The next step is to learn the optimal v by fixing the
w”,wM. As we know, the trace of S/¥ and S}M is
equ1valent to the SYM and S}V, where SV, SVM are

defined as

L C; N
S = 33D (A - dfm )
i=1 j=1 p=1
Vi — v = o §VM,,
(df (1)}, = df(m")) SV, N
VJ\[ ZZC”)T df(mMy )
i=1 p=1
(df(m") = df(m™)Pyv =" G Mo,
where
N L Ci N
S =N D (A - df M) (dr Ay
i=1 j=1 p=1
df(mM)P

SPM =33 Cildf(mY ) — dfm)) (df(m" )

i=1 p=1
df(m*)").

By defining S, = SVV + SVM 4 GMV 4 GMM G — GVV
SYM 4 MV 4 GMM we can get the optlmal v by solvmg the
generahzed elgenvalue problem Syv = \S,v with its leading
eigenvalues.

After we obtain the coupled image filters and the soft
sampling matrix, the dominant patterns can then be
determined by K-means clustering method as introduced
in Section 2.5. Similarly to DFD learning, we learn local
C-DFDs in practice to model the face image precisely. The
face labeling phase is similar to what is described in
Section 2.4 by replacing the discriminant image filters with
coupled discriminant image filters. The histogram-based
features are finally extracted and compared to measure the
dissimilarity of different images.

4 EXPERIMENTS

We compare our DFD with some of state-of-the-art
descriptors. For homogeneous face recognition, the FERET
[41], CAS-PEAL-R1 [42], and LFW [43] databases are used
to evaluate the performance of different methods. For
heterogeneous face image matching, we compare the
performance of different methods on a publicly available
HFB (VIS versus NIR) [44] and a self-collected hetero-
geneous face database, named HFB-S.

4.1 FERET

The FERET database is one of the largest publicly available
databases. The training set contains 1,002 images. In test
phase, there are one gallery set with 1,196 images from 1,196
subjects and four probe sets (fb, fc, dup I, and dup II)
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Fig. 6. Cropped face examples from the FERET database.

including expression, illumination, and aging variations.
All the images are rotated, scaled, and cropped into 150 x
130 size according to the provided eye coordinates. Some
cropped example images are shown in Fig. 6.

4.1.1 Parameter Clarification

Fig. 7 shows the neighboring pixels considered in this work.
Note that the neighbor selection is not very critical in our
method as long as sufficient neighbors are considered
because the optimal soft sampling learning will select the
most discriminative neighbors adaptively.

In the following experiments, the images are equally
divided into 7 x 7 nonoverlapping regions. We learn in total
7 x 7 =49 local DFDs for the whole image. Suppose two
feature vectors extracted from image i and j to be H' =
(R, By, ....hY] and H7 =[hi,h),..., kY], where hi hi,
k=1,2,...,N, are histogram features extracted from the
kth region. The histogram intersection metric (10) is used to
measure the similarity of H' and H’. The effect of three
parameters, including the size of image filter S (d; = S x 5),
the size of neighborhood region R (shown in Fig. 7, dy = 16)
and the number of dominant patterns K, is examined on the
FERET fb probe set. The reduced dimension d; and d, are
set to 5 and 4 empirically in the following experiments:

N

d(Hi, Hy) =Y > min(hy(m), hi(m)), (10)
k=1 m

where hj(m) is the mth bin value of histogram hj.

We first set the size of image filter S and the neighbor-
hood region R to 5 and vary the number of dominant
patterns K from {16, 32,64, 128,256,512,1,024, 2,048}. Fig. 8
shows the recognition rates with respect to different
numbers of dominant patterns. A larger value of K achieves
better face recognition performance. However, larger num-
ber of dominant patterns also leads to higher dimension of
extracted features, which increases the computational cost in

R

Fig. 7. The neighborhood region and the neighboring pixels considered
in this work. The green points (neighboring pixels) are compared with
the red one (central pixel) to extract the PDM.
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Fig. 8. Recognition rates with respect to different numbers of dominant
patterns.

feature matching. Considering the tradeoff between the face
recognition accuracy and the computational efficiency, we
finally set the number of dominant patterns K to 1,024 in the
following experiments.

By setting K to 1,024, we further examine the face
recognition performance by varying the values of S and R.
The values of S and R vary from {3,5,7,9,11} and
{3,5,7,9}, respectively. Table 2 lists the recognition results
with different configurations of S and R on the FERET fb
probe set. The results show the values of S and R have an
effect on the face recognition performance, but not
significantly. In the following experiments, to reduce the
complexity of the proposed method, we always set S and R
to be the same value.

4.1.2 Recognition Results and Discussions

We compare DFD with popular descriptors like LBP, LGBP,
LLGP, LQP, and so on. For DFD, three scales of image
filters, S = 3,5, 7 are tested. The DFD is learned from FERET
training set. All the methods are tested following the four
standard testing protocols (fb, fc, dup I, dup II). There are
expression and lighting variations in fb and fc probe sets,
respectively. Dup I and dup II probe sets are used to test
face recognition performance across aging.

The work in [19], [20], [22] shows that different regions of
face images make different contribution to face recognition.
As adopted in these methods, we adopt a weighted
histogram intersection metric to measure the dissimilarity
of two images. Features extracted from the parts like eyes,
nose should be assigned with larger weights to emphasize
the importance of these regions. Given two feature vectors

H' = [hi, hi),..., kY] and H' = [}, h),... k)], where hi, hl,
k=1,2,...,N, are histogram features extracted from the

TABLE 2
Face Recognition Rates (Percent) with Different Scales of
Image Filters and Neighborhood Radius on FERET fb Probe Set

| [R=3 | R=5 [ R=T [ R=9 |
S=3 96.9 | 97.8 | 97.2 | 97.2
S=5 97.4 | 97.7 | 98.0 | 97.7
S=7 97.9 | 98.1 | 98.2 | 98.0
S=9 98.1 | 98.2 | 98.2 | 97.7
S=11 | 98.3 | 98.0 | 98.1 | 97.7
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|
discriminantimage filters

| soft sampling matrix

Fig. 9. lllustration of learned discriminant image filters and soft sampling
matrix from local patch. Five image filters with the size of 5 x 5 are
learned and the dimension of soft sampling matrix is dy x d, =16 x 4
corresponding to 16 neighbors shown in Fig. 7.

kth region. The weighted histogram intersection metric is
defined as

N

d(H;, H;) = Z Zwk : mm(hi.(m)7 hi(m))7

k

(11)

where wj, is the weight for the kth region, which is learned
following Fisher criterion as in [18] from the training set.

We also apply whitened PCA (WPCA), followed with
cosine metric to measure the dissimilarity of different face
images. As adopted in [45], [32], WPCA is conducted on the
gallery set only.

Fig. 9 illustrates an example of discriminant image filters
and the soft sampling matrix learned from local patch. Five
discriminant and complementary image filters and the
optimal SSM are learned to explore the discriminant and
sufficient information for face recognition.

Table 3 lists the face recognition performance of
proposed DFD, compared with state-of-the-art descriptors.
The results indicate that

1. A number of LBP variants improve the face
recognition performance of ordinary LBP. The
combination of Gabor and LBP response is an
effective way to enhance performance.

2. The learning-based methods, like DT-LBP, DLBP,
and the proposed DFD, achieve higher recognition
rates than the combination of Gabor and LBP,
especially on dup I and II probe sets, where DT-
LBP, DLBP, and DFD outperform LGBP by over
10 percent. It indicates that the learning-based
descriptor is able to extract more discriminative
and proper information for face recognition than the
hand-crafted ones.

3. With weighted histogram intersection metric, DFD
achieves recognition rates comparable to DT-LBP
and DLBP, and outperforms recently proposed
POEM and LQP methods. The DFD achieves
significantly higher recognition rates than POEM
and LQP on dup I and II probe sets, indicating that
DFD is more robust to aging variation than POEM
and LQP.

4. Regarding the scale of DFD, the recognition perfor-
mance of three DFDs (S = 3,5,7) on fb and fc probe
set are similar. On dup I and II sets, the DFD (S = 5)

TABLE 3
Recognition Rates (Percent) of Proposed Method with
State-of-the-Art Methods on FERET Database

[ Methods [ b [ fc [ dupI [ dupIl |

LBP [19] 97.0 | 79.0 | 66.0 64.0
LGBP [20]° 98.0 | 97.0 | 74.0 71.0
LVP [46]7 97.0 | 70.0 | 66.0 50.0
LGT [18]" 97.0 | 90.0 | 71.0 67.0
HGPP [217° 975 ] 995 | 795 77.8
LLGP [47]" 99.0 | 99.0 | 80.0 78.0
DT-LBP [30] 99.0 | 100.0 | 84.0 80.0
DLBP [311° 99.0 | 99.0 | 86.0 85.0
POEM [45]° 97.6 | 950 | 77.6 76.2
LQP 3217 9.2 | 69.6 | 658 483
DFD(S=3) 99.0 | 990 | 808 80.8
DFD(S=5) 992 | 985 | 85.0 82.9
DFD(S=7) 99.0 | 959 | 809 812
POEM+WPCA [45]7| 99.6 | 99.5 | 88.8 85.0
LQP+WPCA [32]° | 99.8 | 94.3 85.5 78.6
DFD(S=3)+WPCA | 993 | 99.0 | 88.8 87.6
DFD(S=5+WPCA | 99.4 | 100.0 | 91.8 923
DFD(S=7)+WPCA | 993 | 964 | 87.7 86.3

*Note that the results are from the original paper.

achieves higher face recognition accuracy than other
two DFDs (S=3 and S =17).

5. With WPCA and cosine metric, the proposed DFD
(S = 5) achieves the best face recognition results on
fc, dup I and dup II probe sets and the third highest
on fb probe set. Especially on dup II probe set, which
has the largest time lapse, it improves the perfor-
mance of POEM and LQP by 7 and 13 percent,
respectively, validating the proposed DFD is able to
extract discriminative and stable face representation
and has demonstrated its potential to enhance the
state-of-the-art face recognition performance.

4.1.3 Impact Analysis of Discriminant Filters and Soft

Sampling Strategy

In this part, we investigate the effectiveness of discriminant
filters and soft sampling strategy individually. First, we
only learn the discriminant filters without soft sampling
strategy, denoted as DFD'. In this case, the projection v is
set to be v =[1,...,1]" so that the neighborhood samplings
are treated equally. Second, we apply the soft sampling
strategy without discriminant filters learning, denoted as
DFD". The projection w in this case is set to be
w= [07...,0,1,0,...,0]T, in which the central elements is
set to 1 and other elements 0, so that only the central pixel
value in the patch is preserved. The original LBP' is also
compared as the baseline. The scale/radius size of all the
descriptors is set to 5. Table 4 illustrates the comparison
results. We can see that both the learned discriminant filters
and the soft sampling strategy help to improve the face
recognition performance, compared with the original LBP.
The combination of them further enhances the face
recognition accuracy, indicating that the proposed DFD is
effective for face recognition. Comparing DFD' with LGBP
listed in Table 3, we can see that DFD' slightly outperforms
LGBP. Note that LGBP applies 40 Gabor filters, while DFD

1. The LBP matlab code is downloaded from http://www.cse.oulu.fi/
CMV /Downloads/LBPMatlab.
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TABLE 4
The Effectiveness Comparison (Percent) of Discriminant
Filters and Soft Sampling Strategy on FERET Database

Methods b fc dup I | dup II
LBP 97.1 | 912 | 673 69.2
DFD! 984 | 979 | 772 76.1
DFD" 99.2 | 943 | 82.6 78.6
DFD 99.2 | 985 | 85.0 82.9

TABLE 5

The Comparison Results (Percent) of
Global and Local DFD on FERET Database

Methods b fc dup I | dup II
Global DFD | 98.5 | 969 | 784 79.1
Local DFD | 99.2 | 98.5 | 85.0 82.9

TABLE 6

Computational Cost Comparison of
Different Face Representations

Methods | Feature dimension | Feature Extraction Time (ms)
LBP 3776 9.68
LGBP 655360 647.7
HGPP 1474560 1280.1
DFD 50176 179.0

only preserves four linear filters. It validates that the
leaning-based linear filters have advantage over Gabor
filters to explore effective information for face recognition.

4.1.4 Global DFD versus Local DFD

To describe the face image precisely, in this paper, we
divided the face image into different parts and a group of
local DFDs is learned from each part, respectively, which is
then used to encode the face image pixels correspondingly.
To examine the spatial dependency of DFD, we also
implement the global DFD, which is learned from the
whole face and applied to encode all the image pixels.
Table 5 lists the face recognition comparison results of
global DFD and local DFD. Because different face regions
contain different face structures, local DFD, which de-
scribes the face structures locally and precisely, achieves
better face recognition performance than global DFD. It
validates that the proposed locally learning way is useful to
achieve high face recognition accuracy.

4.1.5 Computational Cost

In our experimental configuration, the face image is divided
into 49 nonoverlapping regions, each of which corresponds
to a 1,024 dimensional feature. Therefore, the feature
dimension of DFD is 1,024 x 49 = 50,176. With WPCA,
the dimension of extracted feature is reduced to be 1,100 for
more efficient matching. We compare the feature dimension
and computational costs of DFD extraction with LBP,
LGBP, and HGPP representations (shown in Table 6). LBP
is implemented by the original authors and other descrip-
tors are implemented by us. All the computational cost is
computed on a PC with 3.20 GHZ i5 CPU and 4 G RAM
using matlab implementation. It can be seen that LGBP,
HGPP, and DFD significantly enlarge the feature size of
LBP descriptor with rich improvements on face recognition
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Fig. 10. Cropped face examples from the CAS-PEAL-R1 database.

TABLE 7
Recognition Rates (Percent) of Proposed Method with
State-of-the-Art Methods on CAS-PEAL-R1 Database

Methods Expression Accessory Lighting
LGBP [20] 95.0 87.0 51.0
LVP [46]" 96.0 86.0 33.0
HGPP [21]" 96.8 92.5 62.9
LLGP [47]" 98.0 92.0 55.0
DT-LBP [30]" 98.0 92.0 41.0
DLBP [31]" 99.0 92.0 41.0
DFD(S=3) 99.3 94.4 59.0
DFD(S=5) 99.0 93.7 47.1
DFD(S=7) 98.2 89.9 38.3
DFD(S=3)+WPCA 99.0 96.9 63.9
DFD(S=5)+WPCA 99.6 96.9 58.9
DFD(S=7)+WPCA 98.9 94.9 50.0

*Note that the results are from the original paper.

performance. Compared with LGBP and HGPP, DFD is of
lower feature dimension, but with higher face recognition
accuracy. It is promising and has great potential to be
adopted in real applications.

4.2 CAS-PEAL-R1

The CAS-PEAL-R1 database is a large-scale Chinese face
database for face recognition algorithm training and
evaluation. This database provides large-scale face images
with different sources of variations, including pose,
expression, accessory, and lighting. In this experiment, we
follow the standard testing protocols. The gallery set
includes 1,040 images from 1,040 people. For probe sets,
we use the expression, lighting, accessory subsets, which
contain 1,570, 2,243, and 2,285 images, respectively. All the
images are cropped to 150 x 130 size according to the
provided eye coordinates. Fig. 10 shows cropped face
examples from CAS-PEAL-R1 database.

To examine the generalization performance of the
learned DFD, we apply DFD learned from FERET training
set on CAS-PEAL-R1 face database directly to test its
performance. We compare the performance of proposed
DFD with LGBP, LLGP, DT-LBP, DLBP, and so on. Three
probe sets including expression, lighting, accessory varia-
tions are used to evaluate different methods. The compar-
ison results are listed in Table 7. From the results, we can
see that:

1. The performance of DFD (S = 3) is better than other
two DFDs (S =5 and S = 7). It seems that the DFD
with smaller scale has advantage in this database.

2. Comparing the results of DFD with previously
reported results on this database, it shows that
DFD achieves higher face recognition results on
expression and accessory probe sets. It indicates that
the DFD learned from FERET training set has good
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Fig. 11. Face recognition comparison between DFD! trained on FERET
training set and DFD? trained on CAS-PEAL training set.

generalization ability and is robust to variations of
expression and accessory.

3. In lighting probe set, DFD (S = 3) is significantly
better than other two DFDs (S =5 and S = 7). Most
of the DFD results on this probe sets are worse than
HGPP and LLGP, which utilizes Gabor filters to
extract the illumination robust representation. It is
worth noting that the proposed DFD is a data-
driven method. The lack of face samples with
lighting variations on FERET training set may result
in the unsatisfactory performance on lighting probe
set. Nonetheless, the performance of DFD on light-
ing probe set is still much better than other
learning-based methods like DT-LBP and D-LBP,
indicating the superiority of DFD over previous
learning-based descriptors.

4. With WPCA, the proposed DFD further improves
the face recognition performance. DFD (S = 3)+
WPCA achieves higher performance on all three
probe sets than the previous reported results. It
improves the previous best results by 4.4 and
1 percent on accessory and lighting probe sets,
validating that the proposed DFD has good general-
ization ability and is able to extract robust informa-
tion to image variations.

Fig. 12. Cropped face examples from LFW database.

To examine the effect of training set on the face
recognition performance of DFD, we further learn the
DFD on the training set of CAS-PEAL-R1 database and
evaluate its performance on expression, accessory, and
lighting probe sets. The CAS-PEAL-R1 training set contains
1,200 images from 300 subjects. There are 207 images with
lighting variations.

Fig. 11 shows the comparison results of DFD learned
from FERET training set (denoted as DFD') and DFD
learned from CAS-PEAL-R1 training set (denoted as
DFD?). It shows that the DFD! and DFD? have similar
performance on expression and accessory probe sets,
validating that DFD does have good generalization. On
lighting probe set, DFD? achieves higher recognition
accuracy than DFD'. Since DFD is a data-driven method,
more samples with lighting variation on CAS-PEAL-R1
training set are helpful to improve the robustness of DFD
to lighting. We can also find that the generalization of
DFD with smaller scales (e.g., S = 3) is better than those
with larger scales. This is because the smaller scale DFD is
of lower model complexity (i.e., fewer variables in image
filters to be learned) and the FERET training set is large
enough to learn a robust descriptor. In contrast, larger
scale DFD needs more training data to improve the
generalization ability of the learned DFD. With WPCA,
the differences of DFD' and DFD? are reduced and the
generalization performance can be further improved.

4.3 LFW

Labeled Faces in the Wild (LFW) is a database collected
from the web for studying the problem of unconstrained
face recognition. There are 13,233 images from 5,749
different people, with large pose, occlusion, expression
variations. In testing phase, researchers are suggested to
report performance as 10-fold cross validation using splits
that are randomly generated and provided by the
organizers. In this experiment, we use the aligned images
(LFW-a) [48] and crop the images with the size of 150 x 130
from the original images. The cropped examples are shown
in Fig. 12.

To better evaluate the effectiveness of DFD in real
applications, we examine DFD on LFW database. The DFD
is learned from the FERET training set. We test on the
“View 2” set of LFW, which consists of 10 folds of 300
positive and 300 negative image pairs randomly selected
from the original image set. In this experiment, all
descriptors are compared in an unsupervised way (i.e., no
class label information is involved in classifier/metric
learning). The mean recognition accuracy with its standard
error is reported. Strictly speaking, the proposed DFD does
not follow the LFW protocols because it uses the external
face database (FERET) for training. Note that the image
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TABLE 8
Mean Recognition Accuracy (Percent) for
Different Descriptors on LFW Database

Descriptor Accuracy

LBP [49] 69.4540.5
SIFT [49]" 64.1040.6
Hybrid descriptor 331" 78.4740.5
LARK [50]" 72.2340.5
POEM [45]" 75.2240.7
LQP [32]" 75.3040.8
DFD(S=3) 78.35£0.5
DFD(S=5) 80.0240.5
DFD(S=7) 79.4740.5
POEM+WPCA [45]" 82.7140.6
LQP+WPCA [32]" 86.20+0.5
DFD(S=3)+WPCA 82.90+0.5
DFD(S=5)+WPCA 84.0240.4
DFD(S=7)+WPCA 83.1340.5

*Note that the results are from the original paper.

quality in FERET database is very different from that in
LFW. This experiment can be considered as an examination
of DFD’s generalization ability (learned from constrained
images) to unconstrained scenarios.

The accuracy defined in [43] is adopted to compare the
DFD with other descriptors previously reported on LFW
database, including LBP, SIFT, hybrid descriptor, LARK,
POEM, and LQP. Table 8 lists the recognition accuracy of
different methods and Fig. 13 shows the ROC curves of
some descriptors. Note that we only plot the ROC curves
which are available on the LFW website. It is clear to see
that without whitened PCA, the proposed DFD achieves
the best face verification accuracy compared to state-of-the-
art descriptors on LFW like LARK, POEM, and LQP. It
improves LARK by 7.8 percent, POEM by 4.8 percent, LQP
by 4.7 percent, and hybrid descriptor (combination of LBP,
TPLBP, FPLBP, etc.) by 1.5 percent, indicating that DFD is a
good face descriptor for face recognition. With whitened
PCA, DFD also outperforms POEM and achieves compar-
able results with LQP. Different from previous methods,
DFD is a learning-based descriptor rather than manually
designed one. Although the face appearance of FERET is
very different from that on LFW, the DFD learned from
FERET can still work well in the unconstrained case. This is
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Fig. 13. ROC curves over View 2 on LFW database. The results of LBP,
Gabor, SIFT, and LARK are cited from the website (http://vis-
www.cs.umass.edu/lfw/results.html) directly.
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Fig. 14. Cropped examples from HFB database. The first row is VIS
images and the second row is its NIR ones from the same subject.

promising, indicating that the generalization ability of DFD
is good and it is feasible to deploy DFD in real application.

Considering the results of DFD on FERET, CAS-PEAL-
R1, and LFW databases, the DFD with S = 5 achieves the
best and most stable face recognition performance and is a
good choice for face representation in practice.

4.4 HFB

The HFB database was collected by CBSR for heterogeneous
biometric research. There are totally 5,097 images, including
2,095 VIS and 3,002 NIR ones from 202 people in the
database. In this experiment, we use the former 100 people
with their VIS and NIR images as training set. The left
images from 102 people form the testing set. There is no
overlap of images or subjects between training and testing
sets. In testing phase, the gallery set consists of VIS images
and the NIR images are used as the probe ones. All the
images are cropped into 128 x 128 size according to the
automatically detected eye coordinates. Cropped example
images are shown in Fig. 14. The DoG-based preprocessing
method [51] is applied to VIS and NIR images to reduce the
effect of illumination.

The coupled DFD is learned from HFB training set. The
neighboring pixel selection way is the same as in homo-
geneous face recognition (Fig. 7). We also test the
performance of DFD, which is learned from the HFB
training set by combining the VIS and NIR images together.
Besides LBP and its variants (TPLBP, FPLBP [33]), LPQ [52],
SIFT [53], and HOG [54],”> which are popular descriptors in
heterogeneous face recognition [55], [56], are also com-
pared. In the following experiments, the NIR images are
compared with the VIS images and the rank-1 face
recognition rate, the face verification rate (VR) when the
false accept rate (FAR) is 0.001 and 0.01, and the equal error
rate (EER) are reported.

Fig. 15 illustrates the score matrices of LBP and C-DFD.
One pair of VIS and NIR images is selected for each subject
in testing set. The VIS and NIR images form the row and
column of the score matrix, respectively. The diagonal is the
image pair from the same subject. That is, for the point at
the diagonal, the brighter the better. For other area, the
darker the better. It shows that the discriminative ability of
scores derived from C-DFD is much better than that of LBP,
indicating that C-DFD is more effective to match the NIR
and VIS images correctly.

Table 9 shows the face recognition performance of
different descriptors on VIS versus NIR face matching
problem and Fig. 16 illustrates the ROC curves. Not only
the C-DFD, but also the DFD, outperform other methods in

2. The matlab codes of LBP, TPLBP, FPLBP, and LPQ are downloaded
from the website implemented by the original authors. The SIFT and HOG
are implemented by ourselves.
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Fig. 15. lllustration of score matrices generated by (a) LBP and (b)
C-DFD.

TABLE 9
Heterogeneous Face Recognition Performance
(Percent) on HFB Database

VR VR

Methods Rank-1 @FAR=1% | @FAR=01% EER
LBP 55.2 32.1 10.3 24.2
TPLBP 47.9 17.8 3.2 234
FPLBP 51.8 134 34 25.2
LPQ 65.4 26.9 13.3 20.4
SIFT 64.5 43.0 16.1 19.0
HOG 51.2 21.1 7.0 19.0
DFD(S=3) 91.5 83.3 58.9 6.4
DFD(S=5) 69.3 64.2 31.5 8.8
DFD(S=7) 58.8 459 21.1 14.4
C-DFD(S=3) 92.2 85.6 65.5 55
C-DFD(S=5) 85.2 79.1 53.6 6.9
C-DFD(S=7) 74.5 71.2 34.2 8.4
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Fig. 16. ROC curves of LBP, LPQ, SIFT, HOG, DFD, and C-DFD on
HFB database.

terms of all indices. C-DFD (S = 3) beats the best perfor-
mance of traditional descriptor (SIFT) by 28 percent or so in
terms of rank-1 recognition rate, improves the VR
(FAR =1 percent) from 43.0 to 85.6 percent, and reduces
the EER from 19.0 to 5.5 percent. It significantly improves
the LBP, TPLBP, FPLBP, LPQ, SIFT, and HOG descriptors,
validating the superiority of the learning-based descriptor.
The C-DFD, which models the heterogeneous appearance,
achieves better recognition performance than DFD, indicat-
ing that C-DFD is effective and necessary for highly
accurate heterogeneous face recognition.

4.5 HFB-S

The HFB-S database was collected by us as a supple-
mental database to the above HFB. There are in total

Fig. 17. Cropped examples from HFB-S database. The first row is VIS
images and the second row is its NIR images from the same subject.

TABLE 10
Heterogeneous Face Recognition Performance
(Percent) on HFB-S Database

VR VR
Methods Rank-1 @FAR=1% | @FAR=0.1% EER
LBP 66.6 54.3 33.8 17.9
TPLBP 40.9 29.6 10.3 24.4
FPLBP 35.9 25.8 10.3 24.2
LPQ 75.4 55.8 36.5 17.3
SIFT 71.9 52.8 38.3 20.8
HOG 48.2 32.0 12.6 23.6
DFD(S=3) 89.5 73.2 57.9 10.9
DFD(S=5) 81.2 68.6 52.3 11.9
DFD(S=7) 73.2 61.2 44.0 14.2
C-DFD(S=3) 90.2 78.6 64.5 9.5
C-DFD(S=5) 89.2 76.8 62.6 9.7
C-DFD(S=7) | 845 72.7 36.5 1.1
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Fig. 18. ROC curves of LBP, LPQ, SIFT, HOG, DFD, and C-DFD on
HFB-S database.

5,000 images, including 2,500 VIS images and 2,500 NIR
images, from 500 subjects. There are five VIS images and
five NIR images for each subject. In experiment, the VIS
images are used as the gallery set and the NIR images
form the probe set. All the images are cropped to the size
of 128 x 128 according to the automatically detected eye
coordinates (Fig. 17). There are more pose variation
included in HFB-S database. The DoG-based preproces-
sing method [51] is applied.

We directly apply the C-DFD/DFD learned from HFB
to examine its generalization performance. Table 10 lists
the comparison performance with other popular descrip-
tors and Fig. 18 illustrates the corresponding ROC results.
It is promising that C-DFD has good generalization.
C-DFD trained on HFB also significantly outperforms the
state-of-the-art descriptors like LBP, LPQ, SIFT, and HOG
(over 20 percent in terms of the rank-1 recognition rate
and the verification rates) on HFB-S database, validating
that the proposed C-DFD is effective and practical in
real applications.
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5 CONCLUSIONS

This paper proposes a learning-based discriminant face
descriptor for face recognition. It enhances the face recogni-
tion performance by introducing the discriminative learning
into three steps of LBP-like feature extraction. The dis-
criminant image filters, the optimal soft sampling matrix
and the dominant patterns are all learned from images. By
applying DFD on face images, the appearance difference
from different people is maximized and the difference from
the same person is minimized. Regarding the heterogeneous
(cross-modality) face recognition, we further extend the
DFD and propose coupled DFD. Coupled image filters are
learned to reduce the feature gap of heterogeneous
face images. The DFD is examined on both constrained face
databases (FERET and CAS-PEAL-R1) and unconstrained
one (LFW). The results show that DFD outperforms state-of-
the-art descriptors in most cases, validating the effectiveness
of DFD. The C-DFD is compared with LBP, LPQ, SIFT,
HOG, and DFD on large VIS and NIR face databases
comprehensively, showing that C-DFD is reasonable and
effective to address the heterogeneous face recognition
problem. Extensive experimental results show that the
proposed DFD has good generalization and is a competitive
descriptor for face recognition under various circumstances.
One of our future work is to investigate DFD in video-based
face analysis.
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