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In this chapter we introduce concepts and algorithms of shape- and texture-based deformable
models — more specifically Active Shape Models (ASMs), Active Appearance Models
(AAMs), and Morphable Models — for facial image analysis. Such models, learned from
training examples, allow admissible deformations under statistical constraints on the shape
and/or texture of the pattern of interests. As such, the deformation is in accordance with the
specific constraints on the pattern. Based on analysis of problems with the standard ASM
and AAM, we further describe enhanced models and algorithms, namely Direct Appearance
Models (DAMs) and a Texture-ConstrainedASM (TC-ASM), for improved fitting of shapes
and textures. A method is also described for evaluation of goodness of fit using an ASM.
Experimental results are provided to compare different methods.

1. INTRODUCTION

Many image based systems require alignment between an object in the input
image and a target object. The alignment quality can have a great impact on system
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performance. For face analysis, in particular, both shapes and textures provide
important clues useful for characterizing faces. The task of face alignment is to
accurately locate facial features such as the eyes, nose, mouth, and outline, and
to normalize facial shape and texture. Accurate extraction and alignment of these
features offers advantages for many applications.

A sort of the most successful face alignment method is the deformable model,
which can represent variations in either the shape or texture of the target objects.
As two typical deformable model types, the active shape models (ASMs) [1] and
active appearance models (AAMs) [2, 3] have been widely used as alignment
algorithms in medical image analysis and face analysis [4] for the past decade. The
standardASM consists of two statistical models: (1) a global shape model, which is
derived from the landmarks in the object contour, and (2) a local appearance model,
which is derived from the profiles perpendicular to the object contour around each
landmark. The ASM uses local models to find the candidate shape and the global
model to constrain the searched shape. The AAM makes use of subspace analysis
techniques, PCA in particular, to model both shape variation and texture variation,
and the correlations between them. The integrated shape and texture is referred
to as appearance. In searching for a solution, it assumes linear relationships
between appearance variation and texture variation, and between position variation
and texture variation; and learns the two linear regression models from training
data. Minimization in high-dimensional space is reduced in the two models. This
strategy is also developed in the active blob model[5].

ASMs and AAMs can be expanded in several ways. The concept, originally
proposed for the standard frontal view, can be extended to multi-view faces, ei-
ther by using piecewise linear modeling [6] or nonlinear modeling [7]. Cootes
and Taylor show that imposing constraints such as fixing eye locations can im-
prove AAM search results [8]. Blanz and Vetter extended morphable models and
the AAM to model the relationship of 3D head geometry and facial appearance
[9]. Li et al. [10] present a method for learning 3D face shape modeling from
2D images based on a shape-and-pose-free texture model. In Duta et al. [11],
the shapes are automatically aligned using procrustean analysis, and clustered to
obtain cluster prototypes and statistical information about intra-cluster shape vari-
ation. In Ginneken et al. [12], aK-nearest-neighbors classifier is used and a set of
features selected for each landmark to build local models. Baker and colleagues
[13] propose an efficient method called an “inverse compositional algorithm” for
alignment. Ahlberg [14] extends the AAM to a parametric method called an Ac-
tive Appearance algorithm to extract positions parameterized by 3D rotation, 2D
translation, scale, and six Action Units (controlling the mouth and the eyebrows).
In the direct appearance model (DAM) [15, 16], shape is modeled as a linear
function of texture. Using such an assumption, Yan et al. [17] propose a texture-
constrained ASM (TC-ASM), which has the advantage of an ASM in having good
localization accuracy and that of an AAM in having insensitivity to initialization.
To construct an effective evaluation function, a statistical learning approach was
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proposed for face alignment by Huang et al. [18] using a nonlinear classification
function learned from a training set of positive and negative training examples.

The following sections first describe the classicalASM andAAM.We will then
briefly review the 3D Morphable Model as an important 3D deformable model.
After that, two of the improved face alignment algorithms — DAM and TC-ASM
— will be introduced based on the analysis of the problems of classical the ASM
and AAM. Then an alignment quality evaluation mechanism is addressed before
the experimental results and conclusion to end this chapter are presented.

For all the algorithms presented here, a training set of shape–texture pairs is
assumed to be available and denoted as Ω = {(S0, T0)}, where a shape S0 =
((x1, y1), . . . , (xK , yK)) ∈ R

2K is a sequence ofK points in the 2D image plane,
and a texture T0 is the patch of pixel intensities enclosed by S0. Let S be the
mean shape of all the training shapes, as illustrated in Figure 1. All the shapes are
aligned or warping to the tangent space of the mean shape S. After that texture
T0 is warped correspondingly to T ∈ R

L, where L is the number of pixels in the
mean shape S. The warping may be done by pixel value interpolation, e.g., using
a triangulation or thin plate spline method.

Figure 1. Two face instances labeled with 83 landmarks and the mesh of the mean shape.
Reprinted with permission from SC Yan, C Liu, SZ Li, HJ Zhang, H Shum, QS Cheng.
2003. Face alignment using texture-constrained active shape models. Image Vision Comput
21(1):69–75. Copyright c©2003, Elsevier. See attached CD for color version.

2. CLASSICAL DEFORMABLE MODELS

There are two classical deformable models for 2D face analysis — the Active
Shape Model (ASM) and the Active Appearance Model (AAM). We first look
through them; the model for 3D face analysis will be addressed later.

The ASM seeks to match a set of model points to an image by searching along
profiles of each point under the constraint of a statistical shape model. The AAM
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seeks to match both the position of the model points and a representation of the
texture to an image by updating the model parameters using the difference between
the current synthesized image and the target image.

There are three key differences between the two models [19]:

1. The ASM only uses models of the image texture in small regions about
each landmark point, whereas the AAM uses a model of the appearance of
the whole of the region (usually inside a convex hull around the points).

2. TheASM searches around the current position, typically along profiles nor-
mal to the boundary, whereas the AAM only samples the image enclosed
by the current position.

3. The ASM essentially seeks to minimize the distance between model points
and the corresponding points found in the image, whereas the AAM seeks
to minimize the difference between the synthesized model image and the
target image.

2.1. Active Shape Model

In the ASM a shape is represented as a vector s in the low-dimensional shape
k

from the training shapes. A shape S could be linearly obtained from the shape
eigenspace

S = S + Us, (1)

where U is the matrix consisting of k principal modes of the covariance of {S0}.
The local appearance models, which describe a local image feature around

each landmark, are modeled as the first derivatives of the sampled profiles per-
pendicular to the landmark contour [4]. For the jth landmark (j=1, · · · ,K), we
can derive the mean profile gj and the covariance matrix Σg

j from the jth profile

examples directly. At the current position (x(n−1)
j , y

(n−1)
j ) of the jth landmark,

the local appearance models find the “best” candidate, (xn
j , y

n
j ), in neighborhood

N(x(n−1)
j , y

(n−1)
j ) surrounding (x(n−1)

j , y
(n−1)
j ), by minimizing the energy:

(xn
j , y

n
j ) = arg min

(x,y)∈N(x(n 1)
j ,y

(n 1)
j )

‖gj(x, y)− gj‖2Σg
j
, (2)

where gj(x, y) is the profile of the jth landmark at (x, y) and ‖X‖2A =XTA−1X
is the Mahalanobis distance measure with respect to a real symmetric matrix A.

After relocating all the landmarks using the local appearance models, we
obtain a new candidate shape Sn

lm. The solution in shape eigenspace is derived by
maximizing the likelihood:

eigenspace R , spanned byk (<2K) principal modes (major eigenvectors) learned

− −
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sn=arg max
s
p(Sn

lm|s)=arg min
s
Eng(Sn

lm; s), (3)

where1

Eng(Sn
lm; s)=λ‖Sn

lm − Sn
lm

′‖2 + ‖sn
lm − s‖2Λ. (4)

In above equation, sn
lm =UT (Sn

lm− S) is the projection of Sn
lm to the shape

eigenspace, Sn
lm

′ = S + Usn
lm is the reconstructed shape, and Λ is the diagonal

matrix of the largest eigenvalues of the training data {Si}. The first term is the
squared Euclidean distance from Sn

lm to the shape eigenspace, and the second is
the squared Mahalanobis distance between sn

lm and s; λ balances the two terms.
Using the local appearance models leads to fast convergence to the local image

evidence. However, since they are modeled based on the local features, and the
“best” candidate point is only evaluated in the local neighborhood, the solution of
the ASM is often suboptimal, dependent on the initialization.

2.2. Active Appearance Model

from the training shapes by PCA, just as Eq. (1) shows with the ASM.
After aligning each training shape S0 to the mean shape and warping the

corresponding texture T0 to T , the warped textures are aligned to the tangent
space of the mean texture T by using an iterative approach [2]. The PCA model
for the warped texture is obtained as

T = T + Vt, (5)

where V is the matrix consisting of � principal orthogonal modes of variation in
{T}, and t is the vector of texture parameters. The projection from T to t is

t = VT (T − T ) = VTT. (6)

By this, theL pixel values in the mean shape is represented as a point in the texture
subspace St in R

�.
The appearance of each example is a concatenated vector:

A =
(

Λs
t

)
, (7)

where Λ is a diagonal matrix of weights for the shape parameters allowing for the
difference in units between the shape and texture variation, typically defined as
rI. Again, by applying PCA on the set {A}, one gets

A = Wa, (8)

In the AAM, a shape is also modeled by k (<2K) principal modes learned
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where W is the matrix consisting of principal orthogonal modes of the variation
in {A} for all training samples. The appearance subspace Sa is modeled by

a = WTA. (9)

The search for anAAM solution is guided by the following difference between
the textureTim in the image patch and the textureTa reconstructed from the current
appearance parameters:

δT = Tim − Ta. (10)

More specifically, the search for a face in an image is guided by minimizing the
norm ‖δT‖. The AAM assumes that the appearance displacement δa and the posi-
tion (including coordinates (x, y), scale s, and rotation parameter θ) displacement
δp are linearly correlated to δT :

δa = AaδT (11)

δp = ApδT (12)

The prediction matrices Aa,Ap are to be learned from the training data by using
linear regression. In order to estimate Aa, a is displaced systematically to induce
(δa, δT ) pairs for each training image. Due to the large consumption of memory
required for the learning of Aa and Ap, learning has to be done with a small,
limited set of {δa, δT}.

2.3. 3D Morphable Model

While the ASM and AAM are for 2D image pattern analysis, in this section we
temporarily deviate from analysis of a 2D face, and extend the dimension of face
data to 3D by introducing morphable models [9, 20, 21]. With the presence of con-
venient 3D acquiring equipment and the development of the computer hardware,
3D face analysis has now become feasible and promising since it is invariant to the
influence of pose, illumination, and expression. One of the most crucial problems
for all 3D data-processing systems is the alignment between the input data and the
standard. The 3D alignment may involve many rigid or non-rigid transformations.
For 3D face analysis, in particular, alignment means reconstruction of a normal-
ized 3D face model from either input 2D face images or unrestrained 3D data. The
3D Morphable Model (3DMM), as a typical 3D deformable model, inherits both
the spirit of a multidimensional morphable model [22] and the AAM.

The 3DMM is a model of faces represented in 3D where shape information
is separated from texture information. The shape and texture models are learned
from a database of 3D faces, i.e., faces acquired by a 3D CyberwareTM scan-
ner. Building a 3DMM requires transforming the shape and texture spaces into
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vector spaces for which any convex combination of exemplar shapes and textures
describes a realistic human face. Correspondence is the basic requirement for
constructing such a vector space. In [23], correspondences are established be-
tween all exemplar faces and a reference face by an optical flow algorithm. This
scheme brings a consistent labeling of vertices and corresponding albedos across
the whole set of exemplar faces. The shape of an exemplar face is then represented
by a shape vector Sex = ((x1, y1, z1) . . . , (xK , yK , zK)) ∈ R

3K that contains the
x, y, z coordinates of K vertices. The texture of the face is represented by a tex-
ture vector T ex = ((R1, G1, B1) . . . , (RK , GK , BK)) ∈ R

3K that contains the
R,G,B texture values sampled at the same K vertices.

A new face can then be generated by convex combination of the K exemplar
faces, with their shape and texture vectors, S and T , expressed as

S =
K∑

i=1

aiS
ex
i T =

K∑
i=1

biT
ex
i

K∑
i=1

ai =
K∑

i=1

bi = 1. (13)

Again, PCA is applied separately on the shape and texture space to reduce di-
mensionality. Now, instead of describing a new face as a convex combination of
exemplars, as in Eq. (13), we use the similar shape and texture PCA model of
Eq. (1), (5) as

S = S + Us T = T + Vt. (14)

Note that U and V are the matrices consisting of orthogonal modes of variations
in {Sex} and {T ex}. The 3DMM shape and texture coefficient vectors s and t
are low-dimensional coding of the identity of a face invariant to pose and illumi-
nation influence. Given an input 2D image under arbitrary pose and illumination
conditions or unrestrained 3D face data, the 3DMM can recover the vectors of s
and t by an analysis by synthesis, providing an alignment between input face and
exemplar faces in the database.

3. MOTIVATIONS FOR IMPROVEMENTS

ASM uses the local appearance models to search along the profiles of candidate
points. It leads to fast convergence to the local image evidence. However, since
they are modeled based on local features, and the “best” candidate point is only
evaluated in the local neighborhood, the solution of the ASM is often suboptimal,
dependent on the initialization.

By analyzing the relationships between the shape, texture, and appearance
subspaces in the AAM, we will show the defects of the model. Thereby, we
suggest a property that an ideal appearance model should have, which motivates
us to propose improvements to the classical model.

First, let us look into the relationship between shape and texture from an
intuitive viewpoint. A texture (i.e., the patch of intensities) is enclosed by a shape
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(before aligning to the mean shape); the same shape can enclose different textures
(i.e., configurations of pixel values). However, the reverse is not true: different
shapes cannot enclose the same texture. So the mapping from the texture space
to the shape space is many-to-one. The shape parameters should be determined
completely by texture parameters but not vice versa.

Let us now look further into the correlations or constraints between the linear
subspaces Ss,St and Sa in terms of their dimensionalities or ranks. Let us denote
the rank of space S by dim(S). We have the following analysis:

1. When dim(Sa)=dim(St)+dim(Ss), the shape and texture parameters are
independent of each other, and there exist no mutual constraints between
the s and t parameters.

2. When dim(St)<dim(Sa)<dim(St)+ dim(Ss), not all the shape parameters
are independent of the texture parameters. That is, one shape can corre-
spond to more than one texture configuration in it, which conforms our
intuition.

3. One can also derive the relationship dim(St)<dim(Sa) from Eqs. (7) and
(8) and write

Wa =
(

Λs
t

)
(15)

when that s contains some components that are independent of t.

4. However, in the AAM it is often the case where dim(Sa)<dim(St) if the
dimensionalities of Sa and St are chosen to retain, say, 98% of the total
variations, which is reported by Cootes [2] and also observed by us. The
consequence is that some admissible texture configurations cannot be seen
in the appearance subspace because dim(Sa)<dim(St), and therefore can-
not be reached by the AAM search. We consider this a flaw in the AAM’s
modeling of its appearance subspace.

From the above analysis we conclude that the ideal model should be
dim(Sa) = dim(St), and hence that s is completely linearly determinable by t.
In other words, the shape should be linearly dependent on the texture, so that
dim(St ∪Ss) = dim(St). The direct appearance model (DAM) is proposed mainly
for this purpose.

Another motivation of the DAM is memory consumption: the regression ofAa

with the AAM is very memory consuming. The AAM prediction needs to model
linear the relationship between appearance and the texture difference according to
Eq. (11). However, both δa and δT are high-dimensional vectors, and therefore the
storage size of training data generated for learning Eq. (11) increases very rapidly
as the dimensions increase. It is very difficult to train the AAM for Aa even with
a moderate number of images. Learning in a low-dimensional space will relieve
the burden.
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4. DIRECT APPEARANCE MODELS

In this section we introduce an improved appearance model, called the Direct
Appearance Model (DAM), for aligning and estimating face appearances.

The new appearance model is motivated by our findings of a flaw in AAM
modeling and the difficulties in training the AAM presented in previous section.
The DAM model overcomes these problems by its proper subspace modeling based
on the fundament that the mapping from the texture subspace to the shape sub-
space is many-to-one, and therefore a shape can be determined entirely by the
texture in it. From these relationships, the DAM model considers an appearance
that is composed of both shape and texture, to be determinable by using just the
corresponding texture. The DAM uses the texture information directly to predict
the shape and to update the estimates of position and appearance (hence the name
DAM) in contrast to the AAM’s crucial idea of modeling the AAM appearance
subspace from shape and texture combined. In this way, the DAM includes ad-
missible textures previously unseen by the AAM and improves convergence and
accuracy.

Another merit of the DAM is that it predicts the new face position and appear-
ance based on principal components of texture difference vectors, instead of the
raw vectors themselves as with the AAM. This cuts down the memory requirement
to a large extent and further improves convergence and accuracy. The claimed ad-
vantages of the DAM are substantiated by comparative experimental results in
Section 7.1.

4.1. DAM Modeling and Training

DAM consists of a shape model, a texture model, and a prediction model. It
predicts the shape parameters directly from the texture parameters. The shape
and texture models are built based on PCA in the same way as with the AAM.
The prediction model includes two parts: prediction of position and prediction of
texture.

Recall the conclusions we made earlier: (1) an ideal model should have
dim(Sa) = dim(St), and (2) shape should be computable uniquely from texture but
not vice versa. We propose the following prediction model by assuming a linear
relationship between shape and texture:

s = Rt+ ε, (16)

where ε = s − Rt is noise and R is a k × l projection matrix. Denoting the
expectation byE(·), if all the elements in variance matrixE(εεT ) are small enough,
the linear assumption made in Eq. (16) is approximately correct. This is true, as
will be verified later by experiments. Define the objective cost function

C(R) = E(εT ε) = trace[E(εεT )]. (17)

R is learned from training example pairs {(s, t)} to minimize the cost function.
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Consider variation δC(R) caused by δR:

δC(R) (18)

= trace{E([s− (R + δR)t][s− (R + δR)t]T )}
−trace[E{[s−Rt][s−Rt]T }]

= trace{E[RttT δRT + δRttT R

−stT δRT − δRtsT ]}
= trace{RE(ttT )δRT + ∆RE(ttT )R
−E(stT )∆RT − δRE(tsT )}.

Letting δC(R) = 0, we get

trace{δRE(ttT )δRT + δRE(ttT )R} (19)

= trace{E(stT )∆RT + ∆RE(tsT )}

for any ‖δR‖ → 0. Substituting δR by ε1i,j for any (i, j), where ε→ 0 and 1i,j

is the matrix in which entry (i, j) is 1 and 0 elsewhere, we arrive at RE(ttT ) =
E(stT ), and hence obtain an optimal solution:

R = E(stT )[E(ttT )]−1. (20)

The minimized cost is the trace of the following:

E(εεT ) = E(ssT )−RE(ttT )RT . (21)

Instead of using δT directly as in the AAM search (cf. Eq. (12)), we use
principal components of it, δT ′, to predict the position displacement:

δp = RpδT
′, (22)

where Rp is the prediction matrix learned by using linear regression. To do this,
we collect texture differences induced by small position displacements in each
training image, and perform PCA on this data to get the projection matrix HT . A
texture difference is projected onto this subspace as

δT ′ = HT δT, (23)

where δT ′ is about 1/4 of δT in dimensionality, and this makes the prediction
more stable. The DAM regression in Eq. (22) requires much less memory than the
AAM regression in Eq. (11). This is because p is of much lower dimension than
a and δT ′ much lower than δT . This will be illustrated by numbers later.
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Assume that a training set is given as A = {(Si, , Ti)} where a shape Si =
((xi

1, y
i
1), . . . , (x

i
K , y

i
K)) ∈ R

2K is a sequence ofK points in the 2D image plane,
and a texture Ti is the patch of image pixels enclosed by Si. The DAM learning
consists of two parts: (1) learning R, and (2) learning H and Rp. (1) R is learned
from the shape–texture pairs {s, t} obtained from the landmarked images. (2) To
learn H and Rp, artificial training data are generated by perturbing the position
parameters p around the landmark points to obtain {δp, δT}; then learn H from
{δT} using PCA; δT ′ is computed after that; and, finally, Rp is derived from
{δp, δT ′}.

The DAM regression in Eq. (22) requires much less memory than the AAM
regression in Eq. (11); typically, a DAM needs only about 1/20th the memory
required by an AAM. For the DAM, there are 200 training images, 4 parameters
for the position (x, y, θ, scale), and 6 disturbances for each parameter to generate
training data for the training Rp. So the size of the training data for a DAM is
200 × 4 × 6 = 4, 800. For AAM there are 200 training images, 113 appearance
parameters, and 4 disturbances for each parameter to generate training data for
training Aa. The size of the training data set for Aa is 200× 113× 4 = 90, 400.
Therefore, the size of the training data set for an AAM’s prediction matrices is
90, 400 + 4, 800 = 95, 200, which is 19.83 times that for a DAM. On a PC, for
example, the memory capacity for AAM training with 200 images would allow
DAM training with 3,966 images.

Note that there is a variant of a basicAAM [4], which uses texture difference to
predict shape difference. The prediction of shape is done by δs = BδT . However,
this variant is not as good as the basic AAM [4].

4.2. DAM Search

The DAM prediction model leads to the following search procedure. The
DAM search starts with the mean shape and mean texture, equivalent to the mean
appearance with a0 = 0, at a given initial position p0. The texture difference δT
is computed from the current shape patch at the current position, and its principal
components are used to predict and update p and s using the DAM linear models
described above. If ‖δT‖ calculated using the new appearance at the position is
smaller than the old one, the new appearance and position are accepted; otherwise,
the position and appearance are updated by amounts κδa and κδp with varying κ
values. The search algorithm is summarized below:

1. Initialize position parameters p0, and set shape parameters s0 = 0;

2. Get texture Tim from the current position, project it into the texture sub-
space St as t; reconstruct the texture Trec, and compute texture difference
δT0 = Tim − Trec and the energy E0 = ‖δT0‖2;

3. Compute δT ′ = HT δT , and get the position displacement δp = RpδT
′;
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4. Set step size κ = 1;

5. Update p = p0 − κδp, s = Rt;

6. Compute difference texture δT using the new shape at the new position,
and its energy E0 = ‖δT0‖2;

7. If |E − E0| < ε, the algorithm is converged; exit;

8. If E < E0, then let p0 = p, s0 = s, δT0 = δT,E0 = E, goto 3;

9. Changeκ to the next smaller number in{1.5, 0.5, 0.25, 0.125, . . . , }, goto 5;

The above DAM search can be performed with a multi-resolution pyramid
structure to improve the result.

4.3. Multi-View DAM

In multi-view face alignment, the whole range of views from frontal to side
views are partitioned into several sub-ranges, and one DAM model is trained to
represent the shape and texture for each sub-range. Which view DAM model to
use may be decided by using some pose estimate for static images. In the case
of face alignment from video, the previous view plus the two neighboring view
DAM models may be attempted, and then the final result is chosen to be the one
with the minimum texture residual error.

The full range of face poses are divided into 5 view sub-ranges: [−90◦,−55◦],
[−55◦,−15◦], [−15◦, 15◦], [15◦, 55◦], and [55◦, 90◦], with 0◦ being the frontal
view. The landmarks for frontal, half-side, and full-side view faces are illustrated
in Figure 2. The dimensions of shape and texture vectors before and after the
PCA dimension reductions are shown in Table 1, where the dimensions after PCA
are chosen to be such that 98% of the corresponding total energies are retained.
The texture appearances due to respective variations in the first three principal
components of texture are demonstrated in Figure 3.

The left- models and right-side models are reflections of each other, andn thus
we only need train one side. So we train [−15◦, 15◦], [15◦, 55◦], and [55◦, 90◦]
for the 5 models. We can find the corresponding model for all the face with a view
in [−90◦, 90◦].

The multi-view DAM search has a similar process to that of the standard DAM.
The difference lies in the beginning of the iteration where multi- view DAM has
to determine which view the input image belongs to and select a proper DAM
model. Note that p can be computed from δT in one step as δp = RT δT , where
RT = RpHT , instead of two steps as in Eqs. (22) and (23). The search algorithm
is summarized below:
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Table 1. Dimensionalities of shape and
texture variations for face data

View #1 #2 #3 #4 #5

Fontal 87 69 3185 144 878
Half-Side 65 42 3155 144 1108
Full-Side 38 38 2589 109 266

#1 Number of landmark points. #2 Dimension of
shape space Ss. #3 Number of pixel points in
the mean shape. #4 Dimension of texture space
St. #5 Dimension of texture variation space (δT ′).
Reprinted with permission from SZ Li, SC Yan,
HJ Zhang, QS Cheng. 2002. Multi-view face
alignment using direct appearance models. Proc 5th
Int Conf Automatic Face Gesture Recogn, pp. 309–
314. Copyright c©2002, IEEE.

1. Initialize position parameters p0, and determine the view by which to select
the DAM model to use; set shape parameters s0 = 0;

2. Get texture Tim from the current position; project it into texture subspace
St as t; reconstruct texture Ta, and compute texture difference δT0 =
Tim − Ta and the energy E0 = ‖δT0‖2;

3. get position displacement δp = RT δT ;

4. Set step size κ = 1;

5. Update p = p0 − κδp, s = Rt;

6. Compute difference texture δT using the new shape at the new position,
and its energy E = ‖δT‖2;

7. If |E − E0| < ε, the algorithm is converged; exit;

8. If E < E0, then let p0 = p, s0 = s, δT0 = δT,E0 = E, goto 3;

9. Change κ to the next number in {1.5, 0.5, 0.25, 0.125, . . . , }, goto 5.

In our implementation, the initialization and pose estimation are performed
automatically by using a robust real-time multi-view face detector [24], as shown
in Figure 4. A multi-resolution pyramid structure is used in the search to improve
the result. Figure 5 demonstrates scenarios of how DAM converges.

When the face has undergone large variation due to stretch in either the x or
y direction, model fitting can be improved by allowing different scales in the two
directions. This is done by splitting the scale parameter in two: sx and sy . The
improvement is demonstrated in Figure 6.
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Figure 2. Frontal, half-side, and full-side view faces and the labeled landmark points.
Reprinted with permission from SZ Li, SC Yan, HJ Zhang, QS Cheng. 2002. Multi-view
face alignment using direct appearance models. Proc 5th Int Conf Automatic Face Gesture
Recogn, pp. 309– 314. Copyright c©2002, IEEE.

Mean 1st 2nd 3rd

Figure 3. Texture and shape variations due to variations in the first three principal compo-
nents of the texture (the shapes change in accordance with s = Rt) for full-side (±1σ),
half-side (±2σ), and frontal (±3σ) views. Reprinted with permission from SZ Li, SCYan,
HJ Zhang, QS Cheng. 2002. Multi-view face alignment using direct appearance models.
Proc 5th Int Conf Automatic Face Gesture Recogn, pp. 309–314. Copyright c©2002, IEEE.

5. TEXTURE-CONSTRAINED ACTIVE SHAPE MODEL

A TC-ASM [17] imposes the linear relationship of the direct appearance model
(DAM) to improve the ASM search. The motivation is as follows. The ASM has
better accuracy in shape localization than the AAM when the initial shape is placed
close enough to the true shape, whereas the latter model incorporates information
about texture enclosed in the shape and hence yields lower texture reconstruction
error. However, the ASM makes use of constraints near the shape only, without
a global optimality criterion, and therefore the solution is sensitive to the initial
shape position. In the AAM, the solution-finding process is based on the linear
relationship between the variation of the position and the texture reconstruct error.
The reconstruct error, δT , is influenced very much by the illumination. Since δT
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Figure 4. Initial alignment provided by a multi-view face detector. Reprinted with permis-
sion from SZ Li, SC Yan, HJ Zhang, QS Cheng. 2002. Multi-view face alignment using
direct appearance models. Proc 5th Int Conf Automatic Face Gesture Recogn, pp. 309–314.
Copyright c©2002, IEEE.

Figure 5. DAM aligned faces (from left to right) at the 0th, 5th, 10th, and 15th iterations, and
the original images for (top–bottom) frontal, half-side and full-side view faces. Reprinted
with permission from SZ Li, SC Yan, HJ Zhang, QS Cheng. 2002. Multi-view face
alignment using direct appearance models. Proc 5th Int Conf Automatic Face Gesture
Recogn, pp. 309–314. Copyright c©2002, IEEE.
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(0.0794) (0.06804) (0.0662)

(0.0838) (0.8686) (0.2442)

(0.0701) (0.1155) (0.1140)

(0.0953) (0.5892) (0.3625)

(0.1020) (0.2505) (0.1565)

(0.0997) (0.3019) (0.2720)

Figure 6. Results of non-isometric (top of each of the three blocks) and isometric (bottom)
search for frontal (top block), half-side (middle block), and full-side (bottom block) view
faces. From left to right of each row are normal, and stretched faces. The number below
each result is the corresponding residual error. Reprinted with permission from SZ Li,
SC Yan, HJ Zhang, QS Cheng. 2002. Multi-view face alignment using direct appearance
models. Proc 5th Int Conf Automatic Face Gesture Recogn, pp. 309–314. Copyright
c©2002, IEEE.
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is orthogonal to St (projected back to R
L) and dim(St)� dim(T ), the dimension

of space {δT} is very high, and it is hard to train regression matrix Aa,Ap, and
the prediction of the variance of position can be subject to significant errors. Also
it is time and memory intensive. The TC-ASM is aimed at overcoming the above
problems.

The TC-ASM consists of a shape model, a texture model,K local appearance
models, and a texture-constrained shape model. The former three types are exactly
the same as in the ASM and AAM. The texture-constrained shape model, or the
mapping from texture to shape, is simply assumed linear and could be easily
learned. In each step of the optimization, a better shape is found under a Bayesian
framework. The details of the model will be introduced in the following.

5.1. Texture-Constrained Shape Model

In the shape model, there are some landmarks defined on the edges or contours.
Since they have no explicit definition for their positions, there exists uncertainty
of the shape given the texture, while there are correlations between the shape
and the texture. The conditional distribution of shape parameters s given texture
parameters t is simply assumed Gaussian, i.e.,

p(s|t) ∼ N(st,Σt), (24)

where Σt stands for the covariance matrix of the distribution, and st is linearly
determined by texture t. The linear mapping from t to st is:

st = Rt, (25)

where R is a projection matrix that can be pre-computed from training pairs
{(si, ti)} by singular-valued decomposition. For simplicity, Σt is assumed to
be a known constant matrix. Figure 7 demonstrates the accuracy of the prediction
in the test data via matrix R. We may see that the predicted shape is close to
the labeled shape even under varying illuminations. Thus, the constraints over
the shape from the texture can be used as an evaluation criterion in the shape
localization task. The prediction of matrix R is also affected by illumination vari-
ation, yet since Eq. (25) is formulated based on the eigenspace, the influence of
the unfamiliar illumination can be alleviated when the texture is projected to the
eigenspace.

Distribution Eq. (24) can also be represented as the prior distribution of s
given shape st:

p(s|st) ∝ exp{−Eng(s; st)}, (26)

where the energy function is:

Eng(s; st) = ‖s− st‖2Σt
. (27)
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Figure 7. Comparison of the manually labeled shape (middle row) and the shape (bottom
row) derived from the enclosed texture using the learned projection matrix: st = Rt. In
the top row are the original images. All the images are test data. Reprinted with permission
from SC Yan, C Liu, SZ Li, HJ Zhang, H Shum, QS Cheng. 2003. Face alignment using
texture-constrained active shape models. Image Vision Comput 21(1):69–75. Copyright
c©2003, Elsevier.

5.2. TC-ASM in Bayesian Framework

The TC-ASM search begins with the mean shape, namely shape parameters
s0 = 0. The whole search process is outlined as below:

1. Set the iteration number n = 1;

2. Using the local appearance models in the ASM, we may obtain the candi-
date shape, Sn

lm, with shape parameters sn
lm based on the shape, S(n−1),

of the previous iteration;

3. The texture enclosed by Sn
lm is warped to the mean shape, denoted by tn.

The texture-constrained shape sn
t is predicted from tn by Eq. (25);

4. The posterior (MAP) estimation of Sn or sn, given by Sn
lm and sn

t , is
derived based on the Bayesian framework;
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5. If the stopping condition is satisfied, exit; otherwise, n = n + 1, goto
step 2.

In the following we illustrate step 4 and the stopping condition in detail. To
simplify the notation, we shall omit superscript n in the following deduction since
the iteration number is constant. In step 4 the posterior (MAP) estimation of s,
given by Slm and st, is

p(s|Slm, st) =
p(Slm|s, st)p(s, st)

p(Slm, st)
. (28)

Assume that Slm is conditionally independent from st, given s, i.e.,

p(Slm|s, st) = p(Slm|s). (29)

Then
p(s|Slm, st) ∝ p(Slm|s)p(s|st). (30)

The corresponding energy function is

Eng(s;Slm, st) = Eng(Slm; s) + Eng(s; st). (31)

From Eqs. (4) and (27), the best shape obtained in each step is

s = arg min
s

[Eng(s;Slm) + Eng(s; st)]

= arg min
s
‖slm−s‖2Λ + ‖s−st‖2Σt

= arg min
s

[sT (Λ−1 + Σ−1
t )s− 2sT (Λ−1slm + Σ−1

t st)]

= (Λ−1 + Σ−1
t )−1(Λ−1slm + Σ−1

t st).

After restoring the superscript of iteration number, the best shape obtained in
step n is

sn=(Λ−1 + Σ−1
t )−1(Λ−1sn

lm + Σ−1
t sn

t ). (32)

This indicates that the best shape derived in each step is an interpolation between
the shape from the local appearance model and the texture-constrained shape. In
this sense, the TC-ASM could be regarded as a tradeoff between the ASM and
AAM methods.

The stopping condition of the optimization is: if the shape from the local
appearance model and the texture-constrained shape are the same, i.e., the solution
generated by ASM is verified by the AAM, the optimal solution must have been
touched. In practice, however, these two shapes would hardly turn out to be the
same. A threshold is introduced to evaluate the similarity, and sometimes the
convergence criterion in the ASM is used (if the above criterion has not been
satisfied for a long time). For higher efficiency and accuracy, a multi-resolution
pyramid method is adopted in the optimization process.
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6. EVALUATION FOR FACE ALIGNMENT

The emergence of many effective face alignment algorithms serves as a con-
trast to the lack of an effective method for evaluation of face alignment results.
In the ASM, there has been no convergence criterion for the iteration. As such,
the ASM search can give a bad result without giving the user a warning. In the
AAM and DAM, the PCA reconstruction error is used as a distance measure for
evaluation of alignment quality. However, the reconstruction error may not be a
good discriminant for evaluation of the alignment quality because a non-face can
look like a face when projected onto the PCA face subspace. In the TC-ASM, the
algorithm claims to reach a convergence when the solution generated by the ASM
is verified by the AAM, whereas both convergence criteria are not yet stable.

In this section we propose a statistical learning approach for constructing
an evaluation function for face alignment. A nonlinear classification function is
learned from a training set of positive and negative training examples to effectively
distinguish between qualified and unqualified alignment results. The positive sub-
set consists of qualified face alignment examples, and the negative subset consists
of obviously unqualified and near-but-not-qualified examples.

We use the AdaBoost algorithm [25, 26] for learning. A set of candidate weak
classifiers are created based on edge features extracted using Sobel- like operators.
We choose to use edge features because crucial cues for alignment quality are
around edges. Experimentally, we also found that the Sobel features produced
significantly better results than other features, such as Haar wavelets. AdaBoost
learning selects or learns a sequence of best features and the corresponding weak
classifiers, and combines them into a strong classifier.

In the training stage, several strong classifiers are learned in stages using
bootstrap training samples, and in the test they are cascaded to form a stronger
classifier, following an idea in boosting-based face detection [27]. Such a divide-
and-conquer strategy makes the training easier and the good–bad classification
more effective. The evaluation function thus learned gives a quantitative confi-
dence and the good–bad classification is achieved by comparing the confidence
with a learned optimal threshold.

There are two important distinctions between evaluation functions thus learned
and the linear evaluation function of reconstruction error used in theAAM. First, the
evaluation is learned in such a way to distinguish between good and bad alignment.
Second, the scoring is nonlinear, which provides a semantically more meaningful
classification between good and bad alignment. Experimental results demonstrate
that the classification function learned using the proposed approach provides se-
mantically meaningful scoring for classification between qualified and unqualified
face alignment.
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6.1. Solution Quality Evaluation in ASM/AAM

There has been no convergence criterion for ASM search. In ASM search, the
mean shape is placed near the center of the detected image and a coarse-to-fine
search performed. Large movements are made in the first few iterations, getting
the position roughly. As the search is progressing, more subtle adjustments are
made. The result can yield a good match to the target image or it can fail (see
Figure 8). Failure can happen even if the starting position is near the target. When
the variations of expression and illumination are large, ASM search can diverge in
order to match the local image pattern.

Figure 8. Four face instances of qualified (top) and unqualified (bottom) examples with
their warped images. Reprinted with permission from XS Huang, SZ Li, YS Wang. 2004.
Statistical learning of evaluation function forASM/AAM image alignment. In Proceedings:
BiometricAuthentication, ECCV 2004 InternationalWorkshop, BioAW 2004, Prague, Czech
Republic, May 15, 2004 (ECCV Workshop BioAW), pp. 45– 56. Ed D Maltoni, AK Jain.
New York: Springer. Copyright c©2004, Springer.

A similar problem exists in AAM search. There, the PCA reconstruction
error is used as a distance measure for evaluation of alignment quality (and for
guiding the search as well). However, the reconstruction error may not be a good
discriminant for evaluation of alignment quality because a non-face can look like
a face when projected onto the PCA face subspace. Cootes pointed out that, of
2700 testing examples, 519 failed to converge to a satisfactory result (the mean
point position error is greater than 7.5 pixels per point) [4].

In the following we present a learning-based approach for the learning eval-
uation function for ASM/AAM based alignment.
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6.2. AdaBoost-Based Learning

Our objective is to learn an evaluation function from a training set of qualified
and unqualified alignment examples. From now on we use the terms “positive” and
“negative” examples for classes of data. These examples are the face image after
warping to a mean shape, as shown in Figure 8. Face alignment quality evaluation
can be posed as a two-class classification problem: given an alignment result x
(i.e., warped face), evaluation function H(x) = +1 if x is positive example, or
−1 otherwise. We want to learn such anH(x) that can provide a score in [−1,+1]
with a threshold around 0 for the binary classification.

For two-class problems, a set of N labeled training examples is given as
(x1, y1), . . ., (xN , yN ), where yi ∈ {+1,−1} is the class label associated with
example xi ∈ R

n. A stronger classifier is a linear combination of M weak
classifiers:

HM (x) =
M∑

m=1

hm(x). (33)

In the real version of AdaBoost [25, 26], the weak classifiers can take a real
value, hm(x) ∈ R, and have absorbed the coefficients needed in the discrete
version (hm(x) ∈ −1,+1 in the latter case). The class label for x is obtained
as H(x) = sign[HM (x)], while magnitude |HM (x)| indicates the confidence.
Every training example is associated with a weight. During the learning process,
the weights are updated dynamically in such a way that more emphasis is placed
on hard examples that are erroneously classified previously. It has been noted in
recent studies [28, 29, 30] that the artificial operation of explicit re-weighting is
unnecessary and can be incorporated into a functional optimization procedure of
boosting.

An error occurs when H(x) �= y, or yHM (x) < 0. The “margin” of an
example, (x, y), achieved by h(x) ∈ R on the training set examples is defined
as yh(x). This can be considered a measure of the confidence of h’s prediction.
The upper bound of classification error achieved by HM can be derived as the
following exponential loss function [31]:

J(HM ) =
∑

i

e−yiHM (xi) =
∑

i

e−yi
∑M

m=1 hm(x). (34)

AdaBoost constructs hm(x) by stagewise minimization of Eq. (34). Given the
current HM−1(x) =

∑M−1
m=1 hm(x), the best hM (x) for the new strong classifier,

HM (x) = HM−1(x) + hM (x) is the one that leads to the minimum cost:

hM = arg min
h

J(HM−1(x) + h†(x)). (35)
†
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0. (Input)
(1) Training examples {(x1, y1), . . . , (xN , yN )},

where N = a + b; of which a examples have yi = +1
and b examples have yi = −1;

(2) The maximum number Mmax of weak classifiers to be combined;
1. (Initialization)

w
(0)
i = 1

2a
for those examples with yi = +1 or

w
(0)
i = 1

2b
for those examples with yi = −1.

M = 0;
2. (Forward Inclusion)

while M < Mmax

(1) M ←M + 1;
(2) Choose hM according to Eq.36;
(3) Update w

(M)
i ← exp[−yiHM (xi)], and normalize to

∑
i w

(M)
i = 1;

3. (Output)
H(x) = sign[

∑M
m=1 hm(x)].

Figure 9. AdaBoost algorithm. Reprinted with permission from XS Huang, SZ Li, YS
Wang. 2004. Statistical learning of evaluation function for ASM/AAM image alignment.
In Proceedings: Biometric Authentication, ECCV 2004 International Workshop, BioAW
2004, Prague, Czech Republic, May 15, 2004 (ECCV Workshop BioAW), pp. 45–56. Ed
D Maltoni, AK Jain. New York: Springer. Copyright c©2004, Springer.

The minimizer is [25, 26]

hM (x) =
1
2

log
P (y = +1|x,w(M−1))
P (y = −1|x,w(M−1))

, (36)

where w(M−1)(x, y) = exp (−yFM−1(x)) is the weight for the labeled example
(x, y) and

P (y = +1|x,w(M−1)) =
E
(
w(x, y) · 1[y=+1]|x

)
E (w(x, y) | x) , (37)

where E(·) stands for the mathematical expectation and 1[C] is 1 if C is true or 0
otherwise. P (y = −1|x,w(M−1)) is defined similarly.

The AdaBoost algorithm based on the descriptions from [25, 26] is shown in
Figure 9. There, the re-weight formula in step 2.3 is equivalent to the multiplicative
rule in the original form of AdaBoost [32, 25]. In Section 6.3, we will present a
statistical model for stagewise approximation of P (y = +1|x,w(M−1)).
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6.3. Construction of Candidate Weak Classifiers

p(x|y, w)P (y), it can be expressed as

hM (x) = LM (x)− T, (38)

where

LM (x) =
1
2

log
p(x|y = +1, w)
p(x|y = −1, w)

, (39)

T =
1
2

log
P (y = +1)
P (y = −1)

. (40)

The log likelihood ratio (LLR),LM (x), is learned from the training examples of the
two classes. The threshold T is determined by the log ratio of prior probabilities.
In practice, T can be adjusted to balance between the detection and false alarm
rates (i.e., to choose a point on the ROC curve).

Learning optimal weak classifiers requires modeling the LLR of Eq. (39).
Estimating the likelihood for high-dimensional data x is a non-trivial task. In
this work, we make use of the stagewise characteristics of boosting, and derive
likelihood p(x|y, w(M−1)) based on an over-complete scalar feature set Z =
{z′

1, . . . , z
′
K}. More specifically, we approximate p(x|y, w(M−1)) by p(z1, . . .,

zM−1, z′|y, w(M−1)), where zm (m = 1, . . . ,M − 1) are the features that have
already been selected from Z by the previous stages, and z′ is the feature to be
selected. The following describes the candidate feature set Z , and presents a
method for constructing weak classifiers based on these features.

Because the shape is about boundaries between regions, it makes sense to use
edge information (magnitude or orientation or both) extracted from a grayscale
image. In this work, we use a simple Sobel filter for extracting the edge informa-
tion. Two filters are used: Kw for horizontal edges and Kh for vertical edges, as
follows:

Kw(w, h) =


 1 0 −1

2 0 −2
1 0 −1


 and Kh(w, h) =


 1 2 1

0 0 0
−1 −2 −1


 .

(41)
The convolution of the image with the two filter masks gives two edge strength

values:
Gw(w, h) = Kw ∗ I(w, h), (42)

Gh(w, h) = Kh ∗ I(w, h), (43)

The edge magnitude and direction are obtained as

S(w, h) =
√
G2

w(w, h) +G2
h(w, h), (44)

The optimal weak classifier at stageM is derived as Eq. (36). UsingP (y|x,w)=



SHAPE AND TEXTURE-BASED DEFORMABLE MODELS 115

Figure 10. The two types of simple Sobel-like filters defined on sub-windows. The rect-
angles are of size w × h and are at distances of (dw, dh) apart. Each feature takes a value
calculated by the weighted (±1, ±2) sum of the pixels in the rectangles. Reprinted with
permission from XS Huang, SZ Li,YS Wang. 2004. Statistical learning of evaluation func-
tion for ASM/AAM image alignment. In Proceedings: Biometric Authentication, ECCV
2004 International Workshop, BioAW 2004, Prague, Czech Republic, May 15, 2004 (ECCV
Workshop BioAW), pp. 45–56. Ed D Maltoni, AK Jain. New York: Springer. Copyright
c©2004, Springer.

φ(w, h) = arctan(
Gh(w, h)
Gw(w, h)

). (45)

The edge information based on the Sobel operator is sensitive to noise. To solve
this problem we use the sub-block of the image to convolve with the Sobel filter
(see Figure 10), which is similar to Haar-like feature calculation.

6.4. Statistical Learning of Weak Classifiers

A scalar feature z′
k : x → R is a transform from the n-dimensional (400D

if a face example x is of size 20 × 20) data space to the real line. These block
differences are an extension to the Sobel filters. For each face example of size 20
× 20, there are hundreds of thousands of different z′

k for admissible w, h, dw, dh
values, so Z is an over-complete feature set for the intrinsically low-dimensional
face pattern x. In this work, an optimal weak classifier (38) is associated with
a single scalar feature; to find the best new weak classifier is to choose the best
corresponding feature.

We can define the following component LLRs for target LM (x):

L̃m(x) =
1
2

log
p(zm|y = +1, w(m−1))
p(zm|y = −1, w(m−1))

(46)
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for the selected features, zm’s (m = 1, . . . ,M − 1), and

L
(M)
k (x) =

1
2

log
p(z′

k(x)|y = +1, w(M−1))
p(z′

k(x)|y = −1, w(M−1))
(47)

for features to be selected, z′
k ∈ Z . Then, after some mathematical derivation, we

can approximate the target LLR function as

LM (x) =
1
2

log
p(x|y = +1, w(M−1))
p(x|y = −1, w(M−1))

≈
M−1∑
m=1

L̃m(x) + L
(M)
k (x). (48)

Let

∆LM (x) = LM (x)−
M−1∑
m=1

L̃m(x). (49)

The best feature is the one whose corresponding L(M)
k (x) best fits ∆LM (x). It

can be found as the solution to the following minimization problem:

k∗ = arg min
k,β

N∑
i=1

[
∆LM (xi)− βL(M)

k (xi)
]2
. (50)

This can be done in two steps as follows. First, find k∗ for which

(L(M)
k (x1), L

(M)
k (x2), . . . , L

(M)
k (xN )) (51)

is most parallel to

(∆LM (x1),∆LM (x2), . . . ,∆LM (xN )). (52)

This amounts to finding k for which L(M)
k is most correlated with ∆LM over the

data distribution, and set zM = z′
k . Then, we compute

β∗ =
∑N

i=1 ∆LM (xi)Lk (xi)∑N
i=1[Lk (xi)]2

. (53)

After that, we obtain
L̃M (x) = β∗Lk (x). (54)

The strong classifier is then given as

HM (x) =
M∑

m=1

(
L̃m(x)− T

)
(55)

=
M∑

m=1

L̃m(x)−MT. (56)

∗

∗

∗

∗
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The evaluation function HM (x) thus learned gives a quantitative confidence
and the good–bad classification is achieved by comparing the confidence with the
threshold value of zero.

7. EXPERIMENTAL RESULTS

7.1. DAM

7.1.1. Computation of Subspaces

A total of 80 images of size 128 × 128 are collected. Each image contains
a different face in an area of about 64 × 64 pixels. The images set are randomly
partitioned into a training set of 40 images and a test set of the other 40. Each
image is mirrored, and this doubles the total number of images in each set.

K = 72 face landmark points are labeled manually (see an example in
Figure 11. The shape subspace is k = 39 dimensional, which retains 98% of
the total shape variation. The mean shape contains a texture of L = 3186 pixels.
The texture subspace is � = 72 dimensional, as the result of retaining 98% of total
texture variation. These are common to both the AAM and DAM.

For the AAM, an appearance subspace is constructed to combine both shape
and texture information. A concatenated shape and texture vector is 39 + 72
dimensional, where the weight parameter is calculated as r = 7.5 for Λ = rI in
Eq. (7). It is reduced to a 65-dimensional appearance subspace that retains 98%
of total variation of the concatenated features.

For the DAM, the linearity assumption made for the model, s = Rt + ε, of
Eq. (16) is well verified because all the elements in E(εεT ) calculated over the
training set are smaller than 10−5.

Figure 11. A face image and the landmark points. Reprinted with permission from XW
Hou, SZ Li, HJ Zhang, QS Cheng. 2001. Direct appearance models. Proc IEEE Conf
Comput Vision Pattern Recogn 1:828–833. Copyright c©2001, IEEE.
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The original texture difference δT , which is used in the AAM for predicating
position displacement, is 3186 dimensional; it is reduced to 724-dimensional δT ′,
which is used in the DAM for prediction, to retain 98% of variation over the 1920
training examples.

The DAM requires much less memory during learning of prediction matrices
Rp in Eq. (22) than AAM for learning Aa in Eq. (11). For the DAM, there are 80
training images, 4 parameters for the position (x, y, θ, scale), and 6 disturbances
for each parameter to generate training data for training Rp. So, the size of
training data for the DAM is 80 × 4 × 6 = 1920. For the AAM, there are 80
training images, 65 appearance parameters, and 4 disturbances for each parameter
to generate training data for training Aa. The size of the training data set for Aa

is 80 × 65 × 4 = 20800. Therefore, the size of the training data set for AAM’s
prediction matrices is 20800 + 1920 = 22720, which is 11.83 times that for the
DAM. On a PC, for example, the memory capacity for AAM training with 80
images would allow DAM training with 946 images.

7.1.2. Alignment and Appearance Estimation

Table 2 compares the DAM and AAM in terms of the quality of position and
texture parameter estimates, and the convergence rates. The effect of using δT ′

instead of δT is demonstrated through DAM′, which is DAM minus the PCA
subspace modeling of δT . The initial position is a shift from the true position by
dx = 6, dy = 6. The ‖δp‖ is calculated for each image as the averaged distance
between corresponding points in the two shapes, and therefore it is also a measure

Table 2. Comparisons of DAM, DAM’ and AAM in terms of
errors in estimated texture (appearance) parameters δT

and position δp and convergence rates for the
training images (first block of three rows)

and test images (second block)

E(‖δT‖2) std(‖δT‖2) E(‖δp‖) std(‖δp‖) cvg rate

DAM 0.156572 0.065024 0.986815 0.283375 100%
DAM’ 0.155651 0.058994 0.963054 0.292493 100%
AAM 0.712095 0.642727 2.095902 1.221458 70%

DAM 1.114020 4.748753 2.942606 2.023033 85%
DAM’ 1.180690 5.062784 3.034340 2.398411 80%
AAM 2.508195 5.841266 4.253023 5.118888 62%

Reprinted with permission from XW Hou, SZ Li, HJ Zhang, QS Cheng. 2001.
Direct appearance models. Proc IEEE Conf Comput Vision Pattern Recogn 1:828–
833. Copyright c©2001, IEEE.
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Figure 12. Scenarios of DAM (top) and AAM (bottom) alignment. Reprinted with permis-
sion from XW Hou, SZ Li, HJ Zhang, QS Cheng. 2001. Direct appearance models. Proc
IEEE Conf Comput Vision Pattern Recogn 1:828–833. Copyright c©2001, IEEE.

of difference in shape. The convergence is judged by satisfaction of two conditions:
‖δT‖2 < 0.5 and ‖δp‖ < 3.

Figure 12 illustrates average scenarios of DAM and AAM alignment. Fig-
ure 13 illustrates the dynamics of total error δT for 10 images randomly selected
from the training set and 10 from the test set. We see that the DAM has faster
convergence and smaller error than the AAM.

7.1.3. Multi-View DAM

The training set contains 200 frontal, 200 half-side, and 170 full-side view
faces whose sizes are of about 64× 64 pixels, while the test set contains 80 images
for each view group. The landmark points are labeled manually (see Figure 2 and
Table 1). They are used for the training and as ground-truth in the test stage.

To compare, we also implemented the AAM using the same data in the frontal
view. The shape and texture parameter vectors are 69 + 144 dimensional, re-
spectively, where the weight parameter for the concatenation of the two parts is
calculated as r = 8.84 for Λ = rI in Eq. (7). The concatenated vector space is
reduced to a 113-dimensional appearance subspace that retains 98% of the total
variation of the concatenated features.
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Figure 13. The evolution of total δT for the DAM (top) and AAM (bottom) as a function
of iteration number for the training (left) and test (right) images. Reprinted with permission
from XW Hou, SZ Li, HJ Zhang, QS Cheng. 2001. Direct appearance models. Proc IEEE
Conf Comput Vision Pattern Recogn 1:828–833. Copyright c©2001, IEEE.

Some results about DAM learning and search have been presented in Figure
2–6. Figure 14 compares the convergence rate and accuracy properties of the DAM
and AAM (for the frontal view) in terms of the error in δT (cf. Eq. (10)) as the
algorithms iterate. The statistics are calculated from 80 images randomly selected
from the training set and 80 images from the test set. We can see that the DAM has
faster a convergence rate and smaller error than the AAM. Figure 15 illustrates the
error of DAM for non-frontal faces. Figure 16 compares the alignment accuracy
of the DAM and AAM (for frontal faces) in terms of the percentage of images
whose texture reconstruction error δT is smaller than 0.2, where the statistics are
obtained using another test set including the 80 test images mentioned above and
an additional 20 other test images. It shows again that the DAM is more accurate
than the AAM.

The DAM search is fairly fast. It takes on average 39 ms per iteration for
frontal and half-side view faces, and 24 ms for full-side view faces in an image of
size 320× 240 pixels. Every view model takes about 10 iterations to converge. If
3 view models are searched per face, as is done with image sequences from video,
the algorithm takes about 1 second to find the best face alignment.
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Figure 14. Mean error (the curve) and standard deviation (the bars) in reconstructed texture
‖δT‖ as a function of iteration number for DAM (left) and AAM (right) methods with the
training (top) and test (bottom) sets, for frontal face images. The horizontal dashed lines
in the lower part of the figures indicate average ‖δT‖ for the manually labeled alignment.
Reprinted with permission from SZ Li, SC Yan, HJ Zhang, QS Cheng. 2002. Multi-view
face alignment using direct appearance models. Proc 5th Int Conf Automatic Face Gesture
Recogn, pp. 309– 314. Copyright c©2002, IEEE.

Figure 15. Mean error in ‖δT‖ and standard deviation of DAM alignment for half- (left)
and full- (right) side view face images from the test set. Note that the mean errors in the
calculated solutions are smaller than obtained using the manually labeled alignment after a
few iterations. Reprinted with permission from SZ Li, SCYan, HJ Zhang, QS Cheng. 2002.
Multi-view face alignment using direct appearance models. Proc 5th Int Conf Automatic
Face Gesture Recogn, pp. 309–314. Copyright c©2002, IEEE.
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Figure 16. Alignment accuracy of the DAM (dashed) and AAM (solid) in terms of local-
ization errors in the x (left) and y (right) directions. Reprinted with permission from SZ
Li, SC Yan, HJ Zhang, QS Cheng. 2002. Multi-view face alignment using direct appear-
ance models. Proc 5th Int Conf Automatic Face Gesture Recogn, pp. 309–314. Copyright
c©2002, IEEE.

7.2. TC-ASM

A data set containing 700 face images with different illumination conditions
and expressions are selected from the AR database [33] in our experiments, each
of which is 512 × 512, 256 gray images containing the frontal view face about
200 × 200. 83 landmark points are manually labeled on the face. We randomly
select 600 for training and the other 100 for testing.

For comparison, the ASM and AAM are trained on the same data sets, in a
three-level image pyramid (resolution is reduced 1/2 level by level) as with the TC-
ASM. By means of PCA with 98% total variations retained, the dimension of the
shape parameter in theASM shape space is reduced to 88, and the texture parameter
vector in the AAM texture space is reduced to 393. The concatenated vector of
the shape and texture parameter vectors with the weighting parameter, γ = 13.77,
is reduced to 277. Two types of experiments are presented: (1) comparison of the
point-position accuracy, and (2) comparison of the texture reconstruction error.
The experiments are all performed in the 3-level resolution image pyramid.

7.2.1. Point Position Accuracy

The average point-point distances between the searched shape and the man-
ually labeled shape of the three models are compared in Figure 17. The vertical
axis represents the percentage of the solutions for which the average point-to-point
distances to the manually labeled ones are smaller than the corresponding hori-
zonal axis value. The statistics are calculated from 100 test images with different
initializations, with random displacements to the ground truth of 10, 20, 30, and
40 pixels. The results show that TC-ASM outperforms both the ASM and AAM
in most cases since the TC-ASM curve lies above the ASM and AAM curves. It
also suggests that the AAM outperforms the ASM when the initial displacement
is small, while the ASM is more robust with an increasing initial displacement.
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Figure 17. Accuracy of ASM, AAM, TC-ASM. From upper to lower, left to right, are
the results obtained with the initial displacements of 10, 20, 30, and 40 pixels. Note that
the value of the vertical coordinate is the percentage of examples that have the point-to-
point distance smaller than the corresponding value of horizonal coordinate. Reprinted
with permission from SC Yan, C Liu, SZ Li, HJ Zhang, H Shum, QS Cheng. 2003. Face
alignment using texture-constrained active shape models. Image Vision Comput 21(1):69–
75. Copyright c©2003, Elsevier.

We compare the stability of theTC-ASM with theASM in Figure 18. The value
on the horizonal axis is the index number of the selected examples, whereas the
value on the vertical axis is the average standard deviation of the results obtained
from 10 different initializations that deviate from the ground-truth by approxi-
mately 20 pixels. The results are convincing that the TC-ASM is more stable to
initialization. An example is given in Figure 19.

7.2.2. Texture Reconstruction Error

The texture reconstruction error comparison of the three models in Figure 20

texture accuracy of the TC-ASM is close to that of the AAM, while its position
accuracy is better than that of the AAM (see Figure 17). Although the AAM has
more cases with small texture reconstruction errors, the TC-ASM has more cases
with a texture reconstruction error smaller than 0.2.

An example in which the AAM fails for a different illumination condition
from the training data, yet the TC-ASM performs well, is presented in Figure 21.
Figure 22 shows a scenario of AAM and TC-ASM alignment.

illustrates that the TC-ASM improves the accuracy of texture matching. The
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Figure 18. Standard deviation in the results of each example for ASM (dotted) and TC-
ASM (solid) with the training set (left) and the test set (right). Reprinted with permission
from SC Yan, C Liu, SZ Li, HJ Zhang, H Shum, QS Cheng. 2003. Face alignment using
texture-constrained active shape models. Image Vision Comput 21(1):69–75. Copyright
c©2003, Elsevier.

Figure 19. Stability of the ASM (middle column) and the TC-ASM (right column) in
shape localization. The different initialization conditions are shown in the left column.
Reprinted with permission from SC Yan, C Liu, SZ Li, HJ Zhang, H Shum, QS Cheng.
2003. Face alignment using texture-constrained active shape models. Image Vision Comput
21(1):69–75. Copyright c©2003, Elsevier.
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Figure 20. Distribution of the texture reconstruction error with the ASM (dotted), the
AAM (square), and the TC-ASM (asterisk), with training data (left) and test data (right).
Reprinted with permission from SC Yan, C Liu, SZ Li, HJ Zhang, H Shum, QS Cheng.
2003. Face alignment using texture-constrained active shape models. Image Vision Comput
21(1):69–75. Copyright c©2003, Elsevier.

Figure 21. Sensitivities of the AAM (upper) and TC-ASM (lower) to an illumination
condition not seen in the training data. From left to right are the results obtained at the 0th,
2th, and 10th iterations. Result in different levels of image pyramid is scaled back to the
original scale. Reprinted with permission from SC Yan, C Liu, SZ Li, HJ Zhang, H Shum,
QS Cheng. 2003. Face alignment using texture-constrained active shape models. Image
Vision Comput 21(1):69–75. Copyright c©2003, Elsevier.
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Figure 22. Scenarios of AAM (upper) and TC-ASM (lower) alignment with texture re-
construct errors 0.3405 and 0.1827, respectively. From left to right are the results obtained
at the 0th, 5th, 10th, and 15th iterations, and the original image. Result in different levels
of image pyramid is scaled back to the original scale. Reprinted with permission from SC
Yan, C Liu, SZ Li, HJ Zhang, H Shum, QS Cheng. 2003. Face alignment using texture-
constrained active shape models. Image Vision Comput 21(1):69–75. Copyright c©2003,
Elsevier.

From the experiment, the TC-ASM is more computationally expensive than
ASM, but it is much faster than the AAM. In our experiment (600 training images,
83 landmarks, using a P-III 667 computer with 256Mb memory), it takes an average
of 32 ms per iteration, which is twice that of the ASM (16 ms) but a fifth of the
AAM (172 ms). The training time with the AAM is more than 2 hr, while for the
TC-ASM it is only about 12 minutes.

7.3. Evaluation for Face Alignment

The positive and negative training and set data are generated as follows. All
the shapes are aligned or are warping to the tangent space of the mean shape, S.
After that, the texture T0 is warped correspondingly to T ∈ R

L, where L is the
number of pixels in the mean shape S.

In our work, 2536 positive examples and 3000 negative examples are used
to train a strong classifier. The 2536 positive examples are derived from 1268
original positive examples plus the mirror images. The negative examples are
generated by random rotating, scaling, and shifting positive example shape points.
A strong classifier is trained to reject 92% of the negative examples while correctly
accepting 100% of the positive examples.

A cascade of classifiers is trained to train a computationally effective model,
and makes training easier with a divide-and-conquer strategy. When training a
new stage, negative examples are bootstrapped based on the classifier trained in
the previous stages. The details of training a cascade of 5 stages is summarized
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Table 3. Training results (WC: weak classifier)

stage number of pos number of neg number of WC False Alarm

1 2536 3000 22 0.076
2 2536 3000 237 0.069
3 2536 888 294 0.263
4 2536 235 263 0.409
5 2536 96 208 0.0

Reprinted with permission from XS Huang, SZ Li, YS Wang. 2004. Statistical learning
of evaluation function for ASM/AAM image alignment. In Proceedings: Biometric
Authentication, ECCV 2004 International Workshop, BioAW 2004, Prague, Czech
Republic, May 15, 2004 (ECCV Workshop BioAW), pp. 45–56. Ed D Maltoni, AK
Jain. New York: Springer. Copyright c©2004, Springer.

in Table 3. As the result of training, we achieved 100% correct acceptance and
correct rejection rates on the training set.

We compare the learned evaluation function with the PCA texture reconstruc-
tion error-based evaluation method, using the same data sets (but PCA does not
require negative examples in training). The dimensionality of the PCA subspace
is chosen to retain 99% of the total variance of the data. The best threshold of re-
construction error is selected to minimize the classification error. Figure 23 shows
the ROC curve for the reconstruction error-based alignment evaluation method for
the training set. Note that this method cannot achieve 100% correct rates.

During the test, a total of 1528 aligned examples (800 qualified and 728
non-qualified images) are used. We evaluate each face images and give a score in
terms of (a) the confidence valueHM (x) for the learning-based method and (b) the
confidence value distPCA − threshold for the PCA-based method. The qualified
and unqualified alignment decisions are judged by comparing the score with the
normalized threshold of 0. Some examples of accepted (top part) and rejected
(bottom part) face alignment results are shown in Figure 24. Figure 25 compares
the two methods in terms of their ROC curves (first plot) and error curves (the
second plot), where the axis label P (pos/neg) represents the false positive rate and
so on.

Finally, we would like to mention that, experimentally, we also found that
the Sobel features produced significantly better results than other features such as
Haar wavelets. This is not elaborated here.
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Figure 23. ROC curve for the reconstruction error-based alignment evaluation for the
training set. Reprinted with permission from XS Huang, SZ Li,YS Wang. 2004. Statistical
learning of evaluation function forASM/AAM image alignment. In Proceedings: Biometric
Authentication, ECCV 2004 InternationalWorkshop, BioAW 2004, Prague, Czech Republic,
May 15, 2004 (ECCV Workshop BioAW), pp. 45–56. Ed D Maltoni, AK Jain. New York:
Springer. Copyright c©2004, Springer. See attached CD for color version.

0.431 0.662 0.871 0.710 0.432 0.630

qualified qualified qualified unqualified qualified qualified

-0.551 -0.621 -0.705 -0.841 -0.746 -0.802

qualified unqualified unqualified unqualified unqualified qualified

Figure 24. Alignment quality evaluation results: accepted images (top) and rejected images
(bottom). Reprinted with permission from XS Huang, SZ Li, YS Wang. 2004. Statistical
learning of evaluation function for ASM/AAM image alignment. In Proceedings: Bio-
metric Authentication, ECCV 2004 International Workshop, BioAW 2004, Prague, Czech
Republic, May 15, 2004 (ECCV Workshop BioAW), pp. 45–56. Ed D Maltoni, AK Jain.
New York: Springer. Copyright c©2004, Springer. See attached CD for color version.
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Figure 25. Comparison between reconstruction error method and boost method. Reprinted
with permission from XS Huang, SZ Li, YS Wang. 2004. Statistical learning of evaluation
function for ASM/AAM image alignment. In Proceedings: Biometric Authentication,
ECCV 2004 International Workshop, BioAW 2004, Prague, Czech Republic, May 15, 2004
(ECCV Workshop BioAW), pp. 45–56. Ed D Maltoni, AK Jain. New York: Springer.
Copyright c©2004, Springer. See attached CD for color version.

8. CONCLUSION

In this chapter we reviewed important shape- and texture-based deformable
models — such as the ASM, the AAM, and their variants — for image analysis.
These image analysis tools not only provide alignment between the input and the
target to best fit the constraints, but also provide aligned features for object pattern
classification.

Although great advances have been made in the past decade, there remain
challenges for future research. One area is the robustness of deformable models
toward variance of pose, illumination, and expression. Existing models can only
deal with a moderate amount of such variations, so performance deteriorates when
extreme illumination conditions or exaggerated expressions are present. While
a morphable model has demonstrated its effectiveness with 3D object analysis,
efficient, real-time, and exact model searching algorithms are still lacking. Solving
these problems will lead to better applications.
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10. NOTES

1. It is a deviation of the mostly used energy function with a squared Euclidean distance between Sn
lm

and shape S ∈ R2K derived from parameter s. It is more reasonable to take into account the prior
distribution in the shape space.
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