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Abstract

Many efforts have been made in recent years to tackle the
unconstrained face recognition challenge. For the bench-
mark of this challenge, the Labeled Faces in the Wild (LFW)
database has been widely used. However, the standard LFW
protocol is very limited, with only 3,000 genuine and 3,000
impostor matches for classification. Today a 97% accuracy
can be achieved with this benchmark, remaining a very lim-
ited room for algorithm development. However, we argue
that this accuracy may be too optimistic because the under-
lying false accept rate may still be high (e.g. 3%). Further-
more, performance evaluation at low FARs is not statistical-
ly sound by the standard protocol due to the limited number
of impostor matches. Thereby we develop a new benchmark
protocol to fully exploit all the 13,233 LFW face images for
large-scale unconstrained face recognition evaluation un-
der both verification and open-set identification scenarios,
with a focus at low FARs. Based on the new benchmark,
we evaluate 21 face recognition approaches by combining 3
kinds of features and 7 learning algorithms. The benchmark
results show that the best algorithm achieves 41.66% verifi-
cation rates at FAR=0.1%, and 18.07% open-set identifica-
tion rates at rank 1 and FAR=1%. Accordingly we conclude
that the large-scale unconstrained face recognition problem
is still largely unresolved, thus further attention and effort is
needed in developing effective feature representations and
learning algorithms. We thereby release a benchmark tool
to advance research in this field.

1. Introduction

Due to a great value both in pattern recognition research

and practical applications, face recognition has attracted

a large attention over the last three decades, and so the

performance of face recognition algorithms has advanced

significantly. According to the Face Recognition Vendor

Test (FRVT) 2006 [18] and Multiple Biometric Evalua-

tion (MBE) 2010 [10], large-scale face recognition in con-

trolled conditions has already achieved impressive perfor-

mance, for example, with a verification rate over 99% at the

false accept rate (FAR) of 0.1%. However, there still exist

many challenges for face recognition in uncontrolled envi-

ronments [11], such as partial occlusions, large pose varia-

tions, extreme ambient illumination, and low resolutions.

Research on unconstrained face recognition has attracted

a recent focus [24, 13, 11, 16, 4]. For this research, the La-

beled Faces in the Wild (LFW) database [13] has been wide-

ly used for benchmark evaluation, which includes 13,233

images of 5,749 subjects collected from the Internet. How-

ever, in the standard LFW benchmark, only 3,000 pairs of

genuine matches and 3,000 pairs of impostor matches are

considered for classification, which is very limited and does

not fully exploit all the available data. Partially due to this

limitation, the best performance by the standard LFW pro-

tocol has recently reached 97% by [21]. However, instead

of an overall classification accuracy, biometric system eval-

uation generally measures both the verification rate and the

FAR [20]. Regarding this, a 97% accuracy by the standard

LFW protocol may be too optimistic because it may stil-

l imply a 3% FAR which is vulnerable for most practical

systems. Furthermore, when focusing at low FARs such as

FAR=0.1%, the standard LFW evaluation is not statistically

sound because at such FAR only three impostor scores are

available. However, the above limitations of the standard

LFW benchmark have not been paid too much attention to

in the literature. Until recently, there are some studies of

new protocols for unconstrained face recognition, such as

the open-set identification protocol proposed in [16] and [4].

In this paper, we consider to make a full use of the w-

hole LFW database and design a new experiment protocol

including both verification and open-set identification sce-

narios to benchmark a number of existing algorithms. The

new protocol has a particular interest at low FARs. Based on

this benchmark protocol, we evaluated three kinds of fea-



Figure 1. Sample images from the LFW database [13].

ture representations including the manually designed fea-

ture LBP [1], a learning based descriptor LE [6], and a well-

aligned high-dimensional feature (HighDimLBP) [8], and

seven kinds of learning algorithms including some recent-

ly developed metric learning algorithms [23, 9, 14, 15, 7].

The benchmark results show that the best approach achieves

41.66% verification rates at FAR=0.1%, and 18.07% open-

set identification rates at rank 1 and FAR=1%. From the

benchmark results, we conclude that the large-scale un-

constrained face recognition problem is very challenging

and still largely unresolved, thus further attention and ef-

fort is needed in developing effective feature representa-

tions and learning algorithms. From this study, we have

developed a benchmark tool for large-scale unconstrained

face recognition, which is made publicly available at

http://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/ to ad-

vance algorithm development along this direction.

2. Evaluation Database
The LFW database [13] is a large-scale unconstrained

face image database, which is a very good source for the

unconstrained face recognition evaluation. Images in LFW

comes from the Faces in the Wild dataset [3], which is a

large collection of Internet face images collected from the

Yahoo News during 2002 to 2003. The LFW database in-

cludes 13,233 face images of 5,749 subjects. Face images

in LFW were captured in uncontrolled environments. These

images contain large variations in pose, illumination, ex-

pression, occlusion, and resolution. Fig. 1 shows some ex-

ample images from this database.

There are two views with LFW for experiments, includ-

ing View 1 for algorithm development and View 2 for al-

gorithm training, evaluation, and performance report. The

View 2 divides the dataset into 10 disjoint subsets of image

pairs for cross validation, with each subset containing on-

ly 300 pairs of genuine matches and 300 pairs of impostor

matches for classification. The standard LFW benchmark

protocols include the image-restricted training and unre-

stricted training. The main difference is that the unrestrict-

ed protocol allows to form as many genuine and impostor

pairs as possible beyond the restricted pairs for training. Re-

cently, two new protocols are released in [12], namely the

unsupervised and the use of outside data training protocols.

However, with all these training protocols, the test pro-

cedure is the same, that is, one must use the defined pairs

of View 2 for algorithm evaluation and performance report.

Therefore, in the whole benchmark only 3,000 pairs of gen-

uine matching scores and 3,000 pairs of impostor match-

ing scores can be computed for classification, which is very

limited and does not fully exploit all the available data. As

a result, performance evaluation at FAR=0.1% is not sta-

tistically sound because at such FAR only three impostor

matching scores are available. Therefore, due to the limita-

tion of the standard LFW benchmark protocol, we consider

to make a full use of the whole LFW database and design a

new experiment protocol to benchmark a number of exist-

ing algorithms, with a particular interest at low FARs.

3. Benchmark Protocol
3.1. Experimental Setting

With the LFW database, we designed our benchmark ex-

periments as 10 random trials of training and test, and both

face verification and open-set identification [20, 16, 4] were

considered in the test phase. For algorithm development, we

also designed a development set. The experimental setting

is summarized in Table 1. Details are given below.

3.1.1 Development

A development set was randomly selected from the LFW

database. The development set contains 521 images of 100

subjects for training, and 673 images of another 100 sub-

jects for test. All classes in the training and test subset-

s have at least two face images. With the training subset,

3,925 sample pairs of true matches can be created, while

with the test subset, 29,995 true matches can be formed.

This development set can be used if one algorithm needs

to determine the optimal parameters. Alternatively, a cross

validation procedure can also be done within a single trial

of the training set and apply the selected model to the test

set of the same trial. However, any parameter tuning de-

pending on the test set is not allowed. This is to prevent

parameter optimization with the test data. A good algorith-

m should have a good generalization ability of both models

and parameters on unseen test data.

3.1.2 Training and Test

For each of the 10 trial, the whole LFW database was ran-

domly divided into a training set and a test set. The training

set of each trial includes 1,500 subjects, among which about

437 subjects have at least 2 face images. Each training set

contains 3,524 images on average, and 85,341 genuine im-

age pairs can be obtained on average. The test set of each

trial contains the remaining 4,249 subjects, where 9,708

face images on average are available and about 1,243 sub-

jects have at least 2 face images. In the test phase, the test



Table 1. Overview of the experimental setting for the new benchmark on the LFW database [13]. Numbers are averaged over the 10 trials.

Image set No. Classes No. Images No. Genuine matches No. Impostor matches

Development
Train 100 521 3,925 131,535

Test 100 673 29,992 196,136

Evaluation

Train 1,500 3,524 85,341 6,122,185

Test

All 4,294 9,708 156,915 46,960,863

Gallery 1,000 1,000 - -

Genuine probe 1,000 4,350 - -

Impostor probe 3,249 4,357 - -

set is used to compute the matching scores by face recogni-

tion algorithms. On average, 47,117,778 pairs of matching

scores need to be computed in each trial. Then, these match-

ing scores are used for the evaluation of both the face ver-

ification and open-set identification performance measures.

Note that we did not adopt the 10 fold cross validation set-

ting as usually applied. This is because we prefer to have a

large test set for performance evaluation.

For the verification test, all the computed matching s-

cores are used for performance evaluation, including about

156,915 genuine matching scores and 46,960,863 impostor

matching scores in each trial on average. As for the open-

set identification test, we randomly partitioned the test data

into three subsets, the gallery set G, the genuine probe set

PG, and the impostor probe set PN (explained in the next

section). In each trial, 1,000 subjects in the test set were

randomly selected to constitute the gallery set G, and only

one image per subject was selected. To simulate real appli-

cations where the gallery image quality is usually good, we

selected one face image per subject having the best image

quality for that subject. Our selection of good quality face

images is according to the following aspects: frontal or near

frontal pose, normal lighting, neutral expression, no occlu-

sion, and no blur. However, due to the unconstrained nature

of LFW, it was very difficult to select one face image which

satisfies all the above conditions, so we just did our best for

the gallery face image selection. After the gallery image

selection, the remaining face images of the 1,000 subjects

were used to form the genuine probe set PG, and all other

images in the test set constituted the impostor probe set PN .

In each trial, the genuine probe set PG contains 4,350 face

images of 1,000 subjects, and the impostor probe set PN

contains 4,357 images of 3,249 subjects on average.

3.2. Performance Measures

Face verification and identification are two basic sce-

narios of face recognition, where verification is to decide

whether two face images belong to the same identity, and

(closed-set) identification is to determine the identity of the

probe. In face verification, the Receiver Operating Char-

acteristic (ROC) curve is used for performance measure,

which is a plot of the verification rate versus the FAR by

changing the decision thresholds. As for face identification,

the Cumulative Matching Characteristic (CMC) curve is u-

tilized for performance measure, which is a plot of cumula-

tive matching score versus the rank of the probe [20].

As indicated in [20], the open-set identification task is

more general, with the closed-set identification being its

special case. Two sub-tasks, detection and identification,

are involved in the open-set identification process. In the

detection sub-task, the system decides whether the identity

of the probe belongs to the gallery or not. In the identifica-

tion sub-task, the system reports the identity of the accepted

probe. Therefore, the task of open-set identification is to de-

termine the identity of the probe or to reject the probe.

The performance evaluation of the open-set identifica-

tion task involves three sets of face images. The first set

is the gallery set G, which contains face images enrolled in

the system. The other two are probe sets PG and PN . While

PG consists of subjects in the gallery set G but with differ-

ent images, PN includes subjects that are not present in G.

Two performance measures, the detection and identification

rate (DIR), and the FAR, are calculated for evaluation [20].

Let id(g, p) be an indicator whether g and p belong to the

same identity by the ground truth, that is,

id(g, p) =

{
1, g and p belong to the same identity,

0, otherwise.
(1)

Let s(·, ·) be the similarity score function. Let

g∗ = arg max
g∈G,id(g,p)=1

s(g, p), (2)

that is, among all gallery images of the same identity as

p, g∗ reaches the maximum score. Further, let rank(p|G)
denote the rank order of s(g∗, p) among matching scores

between p and all gallery images. That is, rank(p|G) = k
means that s(g∗, p) is the kth largest similarity score. Then,

the DIR and FAR measures are formulated as

DIR(τ, k) =
|{p|p ∈ PG, rank(p|G) ≤ k, s(g∗, p) ≥ τ}|

|PG| ,

(3)

FAR(τ) =
|{p|p ∈ PN , and maxg∈G s(g, p) ≥ τ}|

|PN | , (4)

where τ is the decision threshold, and |A| calculates the

number of elements in the set A.



Given a rank level k, by changing the threshold τ , an

ROC curve like in the verification scenario can be drawn by

plotting DIR vs. FAR. Besides, given an FAR level, a

CMC curve like in the closed-set identification scenario can

also be drawn by first getting the threshold τ by Eq. (4),

then plotting DIR vs. the rank k. Note that when FAR=1,

the corresponding DIR is the traditional closed-set identi-

fication rate, with the gallery set G and the probe set PG.

In the evaluation of both the verification and open-set

identification, the performance measures of all the 10 ran-

dom trials are averaged, and the standard deviation is al-

so computed. The standard deviation of the ROC or CMC

curves reflect the performance variation of one algorithm;

a good algorithm should have a small standard deviation

so that it performs stable under various conditions. In the

face recognition literature, however, the standard deviation

of the performance measure is usually omitted and most re-

searchers focus on the average performance. One possible

reason is that, in a performance reporting table, showing the

standard deviation is not intuitive for ranking the compared

algorithms, and with the ROC or CMC curves, the error bars

are also not intuitive for comparison, not to say the figures

can easily be made giddy with error bars. Therefore, we

propose to use the μ−σ measure to fuse the two indicators.

This fused measure can be directly used for algorithm rank-

ing; a good algorithm should have a large average verifica-

tion rate or identification rate, while having a small standard

deviation. The μ − σ measure can also be understood as a

kind of lower bound. If N(μ, σ) represents a normal dis-

tribution, this performance measure tells that on all runs of

the benchmarked algorithm, about 84.15% of the time the

algorithm performs above μ − σ. As a result, using μ − σ
to rank algorithms is similar as the max-min rule. We will

use this measure throughout this paper for reporting figures

and tables to enforce comparison of the standard deviation.

4. Face Recognition Approaches

4.1. Feature Representation

For feature representation, we utilized three kinds of fea-

tures, namely the hand-crafted feature LBP [1], a learning

based descriptor LE [6], and a high-dimensional LBP fea-

ture, denoted by HighDimLBP [8]. These three kinds of

features have been extracted from the LFW database, and

can be downloaded from the author’s website of [8].

The LBP features were extracted by firstly dividing the

face image into 10×10 non-overlapping sub-windows, then

computing the 59-dimensional uniform LBP histogram on

each of the sub-window, and finally concatenating all his-

tograms [7]. This kind of feature has 5,900 dimensions.

The LE descriptor is based on random projection tree

learning to encode local image structures into discrete

codes, which are considered to be uniformly distributed.

Patch histogram is further applied with the learned encod-

ings, resulting in 20,736 feature dimensions.

The HighDimLBP feature [8] is based on a recently de-

veloped accurate dense facial landmark detection [5]. In

[8], 27 facial landmarks are detected, and the face image is

aligned according to the detected facial landmarks. Then, 5

scales of local patches are sampled around each facial land-

mark, and each patch is further divided into 4 × 4 cells.

A 59-dimensional uniform LBP histograms are exacted in

each cell. Finally, all LBP histograms are concatenated, re-

sulting in a 127,440-dimensional HighDimLBP feature.

4.2. Learning Algorithms

We evaluated seven learning algorithms, including the

Principle Component Analysis (PCA) [22], Linear Discrim-

inant Analysis (LDA) [2], Large Margin Nearest Neigh-

bor (LMNN) [23], Information Theoretic Metric Learn-

ing (ITML) [9], Keep It Simple and Straightforward Met-

ric Learning (KISSME) [14], Locally-Adaptive Decision

Functions (LADF) [15], and Joint Bayesian (JointBayes)

[7]. The LMNN algorithm [23] aims at learning a Maha-

lanobis distance metric for improving the k-nearest neigh-

bor (kNN) classification, which can be solved by semidefi-

nite programming. The ITML approach [9] considers min-

imizing the differential relative entropy between two mul-

tivariate Gaussians for learning the Mahalanobis distance

function. The KISSME algorithm [14] applies the log like-

lihood ratio test of two Gaussian distributions for metric

learning, and so a simplified closed-form solution can be de-

rived, which is very similar to Moghaddam’s Bayesian face

approach [17]. The LADF algorithm [15] can be viewed

as a joint model of a distance metric learning and a locally

adapted thresholding rule, which is further formulated as an

SVM-like problem. The JointBayes [7] algorithm revisits

the famous Bayesian face approach [17], and considers con-

catenating every pair of samples for Bayesian modeling. A

closed-form solution is obtained in [7] for JointBayes which

can be efficiently solved. We implemented the JointBayes

algorithm without EM [7] for simplicity, and we did not

further implement the rotated sparse regression proposed in

[7] because it leads to possible performance drop instead of

improvement according to [7]. The LMNN [23], ITML [9],

KISSME [14], and LADF [15] algorithms were download-

ed from the authors’ websites. Note that default parame-

ters provided by the authors’s codes were used, which may

not reflect the best status of these algorithms. However, the

JointBayes method we implemented has no parameters.

In each trial of the experiments, we reduced all the three

kinds of features to 400 dimensions by PCA, and then ap-

plied the other learning algorithms except that LDA was di-

rectly applied to learn 400-dimensional subspaces.
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Figure 2. Performances of the Joint Bayesian approach [7] with

LBP [1, 7], LE [6], and HighDimLBP [8] features. (a) Verification

ROC curves; (b) Open-set identification ROC curves at rank 1.

5. Benchmark Performance
Following the procedure described in the benchmark

protocol, we evaluated 21 face recognition approaches (3

kinds of features × 7 learning algorithms) as introduced

above. In this section, we report and discuss the bench-

mark performance of these methods for the large-scale un-

constrained face recognition problem.

5.1. Verification Performance

5.1.1 Comparison of Features

We first compare the three kinds of features, LBP [1],

LE [6], and HighDimLBP [8] under the verification set-

ting. The Joint Bayesian approach [7] was applied for

this comparison, which represents the best learning algo-

rithm among the seven, as will be seen later. Fig. 2 (a)

shows the resulting face verification ROC curves follow-

ing the new benchmark procedure. From Fig. 2 (a) it is

clear that the learning based descriptor LE is better than

the hand-crafted feature LBP, and the HighDimLBP fea-

ture is the best one thanks to the well developed alignment

and high dimensionality. These findings are consistent with

[6] and [8]. At FAR=0.1%, the verification rates achieved

by HighDimLBP, LE, and LBP are 41.66%, 23.31%, and

14.18%, respectively. Though great progress has been made

by HighDimLBP+JointBayes (note that this approach has

reached 93.18% classification rate in [8] with the standard

LFW unrestricted protocol), our finding shows that, under

the large-scale unconstrained face verification setting, the

best performance today is still far from satisfactory.

5.1.2 Comparison of Learning Algorithms

We further compare the seven learning algorithms under the

verification setting. Fig. 3 shows the ROC curves by using

the LBP, LE, and HighDimLBP features, respectively. It

can be observed that the JointBayes method is consistent-

ly the best performer, regardless of feature representation.

By using the LBP feature, the difference between differ-

ent algorithms is not too much; they all perform not very

good. However, with better features LE and HighDimLBP,

it is surprising that, the traditional LDA algorithm, being the

second best performer, is still attractive compared to several

recent-year developed metric learning algorithms.

The benchmark performances showing verification rates

at FAR=0.1% and FAR=1% of the 21 evaluated approaches

are summarized in Table 2. As aforementioned, these result-

s are still not satisfactory for large-scale unconstrained face

verification, leaving a large room for improvement. For ex-

ample, new metric learning algorithms need to be developed

for effective large-scale unconstrained face verification.

5.2. Open-set Identification Performance

5.2.1 Comparison of Features

For the open-set identification scenario, we also compare

the three features, LBP, LE, and HighDimLBP. Using the

Joint Bayesian approach, the benchmark ROC curves at

rank 1 are shown in Fig. 2 (b). The conclusion is simi-

lar with the verification case, that is, HighDimLBP is the

best feature, followed by LE and LBP. However, the de-

tection and identification rates are even lower than the ver-

ification scenario. For example, at FAR=1%, the detec-

tion and identification rates by using HighDimLBP, LE, and

LBP are 18.07%, 11.26%, and 8.82%, respectively, and the

corresponding rates at FAR=10% are 32.63%, 20.73%, and

16.61%. These results indicate that, by accepting 10% im-

postors, only 32.63% genuine probes can be correctly iden-

tified at rank 1 by the best algorithm.

5.2.2 Comparison of Learning Algorithms

We further compare the seven learning algorithms under the

open-set identification setting. Firstly, we examine the tra-

ditional closed-set identification performance, in terms of

CMC curves (corresponding to FAR=100% in the open-set

identification setting). As shown in Fig. 4, closed-set iden-

tification performance measured by CMC curves is promis-

ing using the HighDimLBP feature. For example, all algo-

rithms except PCA achieve over 80% identification rates at

rank 100. LDA performs slightly better than JointBayes;

they are the best two algorithms in this case, which achieve

more than 50% identification rates at rank 1.

However, by considering the open-set identification sce-

nario, the ROC curves at rank 1 using the LBP, LE, and

HighDimLBP features respectively (shown in Fig. 5) show

that the benchmark performance is still very poor. These

benchmark results clearly show that the open-set identifi-

cation performance significantly drops with the decreasing

value of FAR. What is worse, according to the open-set i-

dentification CMC curves shown in Fig. 6, increasing the

number of ranks helps very little in improving the perfor-

mance. This is because genuine matching scores at lower

ranks are hardly be larger than the decision threshold.
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Figure 3. Verification ROC curves for the seven learning algorithms using the (a) LBP feature [1, 7], (b) LE feature [6], and (c) High-

DimLBP feature [8].

Table 2. Benchmark performance of the 21 evaluated face recognition approaches for the verification scenario. The reported numbers are

the mean verification rates (%) subtracted by the corresponding standard deviations over 10 trials.

Method
FAR=0.1% FAR=1%

LBP LE HighDimLBP LBP LE HighDimLBP

JointBayes [7] 14.18 23.31 41.66 31.39 46.60 65.84
LDA [2] 9.80 18.12 36.12 22.56 38.68 61.39

KISSME [14] 11.48 16.12 25.35 27.84 35.59 46.45

LMNN [23] 9.46 13.57 22.68 25.55 34.36 49.29

ITML [9] 9.87 9.16 17.32 23.37 22.06 38.32

LADF [15] 4.77 5.92 9.82 18.32 22.93 33.15

PCA [22] 8.28 8.61 7.41 18.69 20.03 17.38
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Figure 4. Closed-set face identification CMC curves for the seven

learning algorithms using the HighDimLBP feature [8].

Nevertheless, the JointBayes approach is still consistent-

ly the best performer as observed from Fig. 5, regardless of

feature representation. Different from the verification case,

it can be observed that for open-set identification the supe-

riority of the JointBayes approach against other learning al-

gorithms is more obvious in using LBP than other features.

Table 3 summarizes the benchmark performances of the

21 evaluated methods for open-set identification at rank 1.

These results show that the best unconstrained face recog-

nition method today is still quite poor for open-set identifi-

cation. On the other hand, it also indicates that the open-set

unconstrained face identification problem is very challeng-

ing. It is more difficult than verification since both detection

and identification should be satisfied. Therefore, special ef-

forts may need to be spent in developing effective learning

algorithms considering the open-set identification scenario.
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Figure 6. Open-set identification CMC curves at (a) FAR=1% and

(b) FAR=10% for the seven learning algorithms using the High-

DimLBP feature [8].

An interesting finding from Tables 2 and 3 is that the top

three learning algorithms, JointBayes, LDA, and KISSME,

all have simple closed-form solutions which can be effi-

ciently solved. This phenomenon may encourage the usage

of simple models to efficiently handle large-scale learning.

5.3. Understanding of the Performance

To understand what can be achieved by the baseline al-

gorithms evaluated in this paper, we conducted two addi-

tional experiments. The first one is with the FRGCv2 [19]

database, where 16,028 controlled face images were used

for experiments. We designed a similar protocol with these

images, resulting in 10 trials of experiments, with each trial

contains 3,448 images for training and 12,579 images for
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Figure 5. Open-set identification ROC curves at rank 1 for the seven learning algorithms using the (a) LBP feature [1, 7], (b) LE feature

[6], and (c) HighDimLBP feature [8].

Table 3. Benchmark performance of the 21 evaluated face recognition approaches for open-set identification at rank 1. The reported

numbers are the mean detection and identification rates (%) at rank 1 subtracted by the corresponding standard deviations over 10 trials.

Method
FAR=1% FAR=10%

LBP LE HighDimLBP LBP LE HighDimLBP

JointBayes [7] 8.82 11.26 18.07 16.61 20.73 32.63
LDA [2] 5.18 9.38 14.94 9.45 16.66 31.39

KISSME [14] 5.02 6.83 11.34 9.45 12.69 18.94

LMNN [23] 3.49 4.66 9.53 7.44 9.81 19.04

ITML [9] 4.42 4.07 8.59 8.11 7.25 16.36

PCA [22] 4.81 4.77 4.70 8.97 8.84 8.46

LADF [15] 0.33 0.57 1.24 2.11 3.20 6.20

test on average. Face images were cropped and resized with

three scales (120×120, 80×80, and 40×40 pixels), and the

basic uniform LBP histogram was extracted and concatenat-

ed over 10×10 non-overlapping blocks in these images, re-

sulting in 17,700 feature dimensions. These features were

further reduced to 400 dimensions by PCA, and then the

JointBayes approach was applied for face recognition. As

a result, we got 94.36% verification rate @FAR=0.1%, and

82.71% open-set identification rates at rank 1 and FAR=1%.

Second, we also evaluated the JointBayes implementa-

tion with the HighDimLBP feature under the standard LFW

unrestricted protocol. As a result, we got a 92.33% accura-

cy, compared to 93.18% reported in [8] with the same proto-

col. The difference is probably due to the use of EM in [7].

The above experimental results indicate that the imple-

mented baseline method JointBayes performs well both un-

der the new protocol with controlled face images and under

the standard LFW unrestricted protocol with unconstrained

face images. Besides, according to the LFW result page,

the HighDimLBP+JointBayes approach is among the state

of the art. Therefore, the low accuracy reported in this pa-

per is mainly due to the new benchmark protocol designed

with unconstrained face images, not the improper selection

or failure of re-implementation of baseline algorithms.

In fact, the standard LFW protocol only considers the

overall classification accuracy, but biometric system evalu-

ation generally measures both the verification rate and the

FAR [20]. regarding this, a 93% result by the standard pro-

tocol may still imply a 7% FAR. Such a high FAR is not use-

ful for most practical systems, but this has not been paid too

much attention to. While the low accuracy reported with the

new benchmark protocol is partially due to tens of millions

of matching scores evaluated, the main reason is the differ-

ent FAR focusing. Our special interest is at low FARs, e.g.

FAR=0.1%. Beyond this there is not much difference in per-

formance between the new and the standard LFW protocols.

For example, performance of the HighDimLBP+JointBayes

under the new protocol shown in Fig. 2 (a) of this paper is

comparable to other standard LFW ROC plots (e.g. Fig. 7

in [8]) at high FARs (e.g. 90% verification rate @FAR=10%

vs. 95% in [8]), and in this informal comparison the main

difference in the new protocol is the smaller training set

and much larger test set. However, as discussed preciously,

when focusing at FAR=0.1%, the standard LFW evaluation

is not statistically sound because at such FAR only three

impostor scores are available. Therefore, this motivate us

for designing a new benchmark protocol to fully exploit the

LFW database and evaluate performance at low FARs.

6. Conclusions

In this paper, we have developed a new benchmark pro-

tocol based on the largely studied LFW database for large-

scale unconstrained face recognition evaluation under both



verification and open-set identification scenarios, with a fo-

cus on low FARs. We also suggested the μ − σ mea-

sure to enforce comparing the standard deviation of per-

formance measures over the 10 random trials. We have

evaluated three kinds of feature representations and sev-

en kinds of learning algorithms. The benchmark results

show that HighDimLBP+JointBayes is the best approach,

but achieving only 41.66% verification rates at FAR=0.1%,

and 18.07% open-set identification rates at rank 1 and

FAR=1%. Accordingly, we conclude that the large-scale

unconstrained face recognition problem is still largely un-

resolved, thus further attention and effort is needed in de-

veloping effective feature representations and learning al-

gorithms. From this study, we have developed a benchmark

tool, which is made publicly available to advance algorithm

development for large-scale unconstrained face recognition.
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