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Abstract Incorporating multiple cameras is an effective
solution to improve the performance and robustness ofmulti-
target tracking to occlusion and appearance ambiguities. In
this paper,we propose a newmulti-cameramulti-target track-
ing method based on a space-time-view hyper-graph that
encodes higher-order constraints (i.e., beyond pairwise rela-
tions) on 3D geometry, appearance, motion continuity, and
trajectory smoothness among 2D tracklets within and across
different camera views.We solve tracking in each single view
and reconstruction of tracked trajectories in 3D environment
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simultaneously by formulating the problem as an efficient
search of dense sub-hypergraphs on the space-time-view
hyper-graph using a sampling based approach. Experimen-
tal results on the PETS 2009 dataset and MOTChallenge
2015 3D benchmark demonstrate that our method per-
forms favorably against the state-of-the-art methods in both
single-camera and multi-camera multi-target tracking, while
achieving close to real-time running efficiency. We also pro-
vide experimental analysis of the influence of various aspects
of our method to the final tracking performance.

Keywords Multi-camera multi-target tracking · Single-
cameramulti-target tracking ·Space-time-viewhyper-graph ·
Dense sub-hypergraph search

1 Introduction

As an important problem in computer vision, multi-target
tracking finds wide applications in video surveillance, traf-
fic monitoring and crowd analysis. With the maturity of
detection algorithms (Dollár et al. 2012), the current state-of-
the-art performance in multi-target tracking is attained with
the tracking-by-detection methodology, in which reliable
detection of short sequence of moving objects or track-
lets are linked based on their affinities in appearance and
motion to form long tracks. Albeit these successes, the
majority of existing multi-target tracking algorithms use a
single camera view. As such, their performance succumbs
to false/miss detections due to target occlusions and ambigu-
ous appearances. Using detections gleaned from different but
overlapping camera views, these problems can be effectively
solved and the accuracy of multi-target tracking can be sig-
nificantly improved.
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Many previous methods on multi-camera multi-target
tracking (Fleuret et al. 2008; Wu et al. 2009; Berclaz et al.
2011; Wu et al. 2011; Liu et al. 2012; Attanasi et al. 2015)
entail two consecutive steps: (i) repeated single view track-
ing that finds tracklets in each individual camera view, and
(ii) cross-view reconstruction of 2D tracklets using 3D geo-
metric constraints1. These simple approaches do not take
advantage of the fact that single view tracking and cross-view
reconstruction provide mutually bootstrapping information:
3D geometric constraints can rule out false detection and
improve tracklet linking in each view, while reliable linking
of tracklets in individual views can compensate the effect of
noise and outliers that often plague the reconstruction step.

An alternative strategy of multi-camera tracking is to
jointly solve the tracking and reconstruction problems in a
single optimization framework. However, as will be detailed
in Sect. 2, two existing methods (Leal-Taixé et al. 2012;
Hofmann et al. 2013) using this strategy rely on pairwise
association of 3D tracklets (Fig. 2a, b), and do not take full
advantage of the strong higher-order correlations among the
tracklets across time and space. For instance, as shown in
Fig. 1, if there are three 3D tracklets T1, T2, and T3 of the
same trajectory, but due to ambiguity in appearance of each
camera view, tracklet T2 is not the strongest association with
either T1 or T3. On contrary, both tracklets T1 and T3 are sim-
ilar to T4 in appearance. In this case, considering the motion
consistency of three tracklets in joint is crucial to associate
them into correct trajectory (T6), but pairwise associationwill
lead to wrong linkings (associate tracklets T1, T3, and T4 to
generate wrong trajectory T5). Specifically, the hypotheti-
cal trajectory T6 is more smooth than T5 with facile motion
direction changes, which indicates the more consistency of
tracklets T1, T2, and T3 than T1, T3, and T4 in motion. Here,
the distinction between higher order dependencies and pair-
wise dependencies among non-consecutive frames should be
made clear, i.e., the higher order dependency corresponding
to the trajectory smoothness of tracklets T1, T2 and T3 can not
be simply represented as the pairwise constraints between T1
and T2, T2 and T3, and T1 and T3. Such higher order correla-
tions are particularly useful to handle multi-camera tracking
scenarios with severe occlusions.

In this work, we describe a new multi-camera multi-
target tracking method based on a weighted hyper-graph
that represents higher-order affinities of 2D tracklets, which
characterize their consistencies in 3D geometry, appear-
ance, motion continuity and trajectory smoothness. We term
this hyper-graph as Space-Time-View hyper-graph (STV
hyper-graph). The nodes of STV hyper-graph correspond
to potential 3D couplings of 2D tracklets, which are recon-

1 Many methods do not form tracklets but perform association directly
on detections in each frame. In this work, we unify these methods by
treating individual frame detections as tracklets of length one.

Fig. 1 Example of the advantages of using higher-order dependencies
amongmultiple tracklets instead of the pairwise dependencies. Notably,
the more similar of the colors of nodes indicates the more similar of the
couplings in appearance over all camera views

structed 3D tracklets from 2D tracklets across different views
that are potentially associated with the trajectory of the
same tracked target (see Fig. 2c for an illustrative example).
Geometric consistencyof these 2D tracklets in forming a cou-
pling is encoded with the weight of each node. Hyper-edges
of STV hyper-graph with their associated weights reflect
affinities among the couplings. In order to correctly associate
tracklets across multiple views and eventually reconstruct
the 3D trajectory, we further perform a search of dense
sub-hypergraphs on STV hyper-graph, which correspond to
sub-hypergraphs with higher weights over including nodes
and hyper-edges, and then accumulatively link couplings in
such sub-hypergraphs.
Contributions The contributions of our work are summa-
rized as follows.

– We introduce STV hyper-graph constructed from input
videos of multiple views as a flexible and compact rep-
resentation for the inference of higher-order correlations
among tracklets across space, time, and camera views,
which is a generalization of the hyper-graph based single
viewmulti-target trackingmethod presented inWen et al.
(2014).

– We formulate the multi-camera multi-target tracking
problem as searching for dense sub-hypergraphs on STV
hyper-graph, which is solved efficiently by the proposed
sampling based approximation method. In comparison
with the optimization strategy for single-camera track-
ing in Wen et al. (2014), our method can scale up to the
much larger number of correlations in the hyper-graph,
which are prerequisite inmulti-camera tracking scenario.

– In comparison with previous works on multi-camera
multi-target tracking (Leal-Taixé et al. 2012; Hofmann
et al. 2013), our method enables the incorporation of
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Fig. 2 Models of two previous methods and this work on multi-camera multi-target tracking. For clarity, we illustrate only a partial set of edges
and hyper-edges. This figure is better viewed in color

higher-order dependencies among the tracklets across
both time and space, and is more robust to occlusions
and appearance ambiguities.

– Extensive experiments are performed on the PETS 2009
dataset and MOTChallenge 2015 3D benchmark to
compare with the state-of-the-art methods, and show
improved effectiveness and running efficiency of our
method in both single-camera and multi-camera multi-
object tracking tasks.

The rest of the paper is organized as follows. In Sect. 2
we review relevant works. In Sect. 3 we describe our method
in detail. Experimental results are presented in Sect. 4 and
Sect. 5 concludes the paper with discussion of future works.

2 Related Works

2.1 Single-Camera Multi-Target Tracking

A traditional approach to multi-target tracking is to predict
the states (i.e., location and size) of tracked targets using
Bayesian filtering methods, e.g., Kalman or particle filters
(Isard and Blake 1998; Marchesotti et al. 2002; Khan et al.
2005; Smith et al. 2005; Leven and Lanterman 2009; Yang
et al. 2014). These methods can track targets state effectively
in short durations and run in real-time, but are not effective in
handling occlusion and appearance changes that often occur
in complex tracking scenarios.

Many recent effective single-camera multi-target tracking
methods are based on the tracking-by-detection approach,
and formulate tracking as a data association problem. The
Joint Probabilistic Data Association Filter (JPDAF) (Hong
and Cui 2000) and Multiple Hypotheses Tracking (MHT)

(Reid 1979) have been proposed to handle the data associ-
ation problem efficiently. The JPDAF algorithm focuses on
estimating the best assignments between the tracked targets
and the detections in a probabilistic framework. Different
from frame-by-frame association in JPDAF, MHT computes
the likelihoods of all candidate assignments over several time
steps. However, the number of candidate assignments grows
exponentially with the number of frames, whichmakesMHT
not efficientwhen handling the long-term association.Yu and
Medioni (2009) present a data driven Markov Chain Monte
Carlo method to accomplish the data association task in mul-
tiple frames. The sampling-based inference algorithm may
have long “burn-in” time, i.e., the time to run the Markov
chain before we can collect samples from the equilibrium,
and difficult to evaluate due to the lack of practical check for
convergence.

Tohandle the long-termassociation problem, several algo-
rithms have been proposed, which differs in the specific opti-
mization methods used, including network flow (Zhang et al.
2008; Izadinia et al. 2012; Pirsiavash et al. 2011; Chari et al.
2015), K-Shortest Path (KSP) (Berclaz et al. 2011), max-
imum weight independent set (Brendel et al. 2011), linear
programming (Jiang et al. 2007), multi-framematching (Shu
et al. 2012), hierarchical Hungarian algorithm (Huang et al.
2013;Yang andNevatia 2012a, b), tensor power iteration (Shi
et al. 2014), hyper-graph based optimization (Wen et al.
2014). Most of these works merely focus on using the pair-
wise similarities of 2D detections/tracklets to complete the
tracking task, except the method (Wen et al. 2014). In par-
ticular, the method of Wen et al. (2014) is the most related
work, because it also uses a weighted hyper-graph to repre-
sent higher order affinities between 2D tracklets, and directly
searches the dense subgraphs on the hyper-graph to solve the
tracking problem. However, this method is not suitable for
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the multi-camera multi-target tracking problem. In particu-
lar, STV hyper-graph models relations among 3D tracklets
reconstructed from 2D tracklets of multiple views, and nodes
in STV hyper-graph have weights reflecting unreliabilities
of 3D reconstruction. Such node weights are crucial in our
method, which are not addressed in Wen et al. (2014). Fur-
thermore, the number of nodes in STV hyper-graph is several
orders ofmagnitude larger than that used in single view track-
ing (Wen et al. 2014), which renders the simple optimization
algorithm of (Wen et al. 2014) impractical due to high com-
putation and memory requirements.

2.2 Multi-Camera Multi-Target Tracking

Usingmultiple camera views can potentially improve the per-
formance of multi-target tracking, but it also brings up some
challenging issues. In particular, the tracking algorithmmust
link 2D tracklets and at the same time reconstruct their 3D
trajectories. Early multi-camera multi-target tracking meth-
ods (Fleuret et al. 2008; Wu et al. 2009, 2011; Berclaz et al.
2011; Liu et al. 2012) usually solve the tracking and recon-
struction problems in separate stages, which do not take
advantage of the mutually bootstrapping relation between
these two tasks.

Recently, two existing works attempt to solve these two
problems, i.e., tracking and reconstruction, within a single
optimization framework. In Leal-Taixé et al. (2012) (model
illustrated in Fig. 2a), multiple graphs are constructed for
detections in each view to capture their affinities, and the
associations of these detections are encoded with another
type of graph that are constructed for each pair of cam-
era views. The overall tracking problem is solved using
the Dantzig-Wolfe decomposition and branching algorithm.
This method is further improved in Hofmann et al. (2013)
(model illustrated in Fig. 2b), where the couplings between
2D detections across two or more camera views are formed,
and longer tracks are obtained from a directed graph cap-
turing pairwise dependencies of reconstructed 3D couplings
cross the frames. However, in both works, only pairwise cor-
relations between candidate associations of 2D detections
across camera views are modeled. Accordingly, dependen-
cies among a set of more than two candidate associations
of 2D detections across camera views cannot be effectively
modeled. If a target fails to appear in any camera view due
to occlusion or miss detection, using only pairwise corre-
lations will lead to fragmentations and identity switches,
which can significantly deteriorate the overall performance
and robustness of the trackingmethod. Our proposedmethod
is different from these two methods. (1) Unlike Leal-Taixé
et al. (2012), our algorithm uses only one global hyper-graph
for both reconstruction and tracking, which considers the
high-order dependencies among multiple couplings rather
than the pairwise dependencies in multiple graphs. (2) Dif-

ferent from Hofmann et al. (2013), the proposed method
explores higher-order dependencies amongcouplings instead
of the pairwise dependencies by constructing a hyper-graph.
The tracking problem is naturally formulated as the dense
subgraph exploiting problem on the hyper-graph, which is
solved by the proposed sampling based approximate opti-
mization method.

3 Methodology

Our multi-camera multi-target tracking method is based on
the STV hyper-graph, representing the cross-view and tem-
poral associations of detected 2D tracklets in individual
camera views. The process starts with the generation of cou-
plings from tracklets in each single camera view (Sect. 3.1)
and computation of affinitymeasures (Sect. 3.2). In Sect. 3.3,
we introduce the STV hyper-graph, which is the major data
structure to incorporate higher-order dependencies among
tracklets. From the STV hyper-graph, trajectories of moving
targets are extracted from the dense sub hypergraphs. The
details of extracting such dense sub-hypergraphs and form-
ing longer trajectories are provided in Sect. 3.4. The notations
used in this paper are listed in Table 1.

3.1 Generating Couplings

We postulate that there are V static camera views, where
videos from each view are synchronized with the same frame
rate. Furthermore, from each video, tentative short sequences
of detected targets (tracklets) are assumed to have been
obtained from frame detections (e.g., using Felzenszwalb
et al. 2008) or using single-view tracklet linking methods
(e.g., Shi et al. 2014;Wen et al. 2014). Throughout this paper,
we use v to index camera views, i to index the tracklets, and
j to index the detections of a tracklet.
We denote the collection of detected 2D tracklets from

the v-th camera view as Tv = {T v
1 , · · · , T v

nv
}. A single 2D

tracklet, T v
i = {Dv,i

1 , · · · , Dv,i
mc,i }, corresponds to a series

of frame detections, mc,i is the number of detections in the
tracklet, and Dv,i

j = (tv,i
j , qv,i

j ), where tv,i
j is the frame

number of the detection, and qv,i
j = (xv,i

j , yv,i
j , w

v,i
j , hv,i

j )

specifies the bounding box of the detection with center
pixel location (xv,i

j , yv,i
j ) and dimension (w

v,i
j , hv,i

j ). We

also use tvi = {tv,i
1 , · · · , tv,i

mc,i } to denote the set of all frame
indices of the corresponding 2D tracklet T v

i . Our defini-
tion of 2D tracklets generalizes cases of single detection
(i.e., |tvi | = 1), or continuous sequence of detections (i.e.,
tvi = {a, a+1, · · · , b−1, b}where a < b are two integers).
We also consider calibrated cameras with known parameters,
where targets are moving on a common ground-plane, such
that any 2D pixel location (x, y) in the video frame can be

123

Author's personal copy



Int J Comput Vis

Table 1 Notations
Symbol Meaning

V Number of used camera views.

Tv = {T v
1 , · · · , T v

nv
} The collection of detected 2D tracklets from the v-th

camera view

T v
i = {Dv,i

1 , · · · , Dv,i
mc,i } The i-th tracklet of camera view v, mc,i is the

number of detections in the tracklet

Dv,i
j = (tv,i

j , qv,i
j ) The j-th detection in the i-th tracklet of camera view

v, and tv,i
j is the frame index of the detection

qv,i
j = (xv,i

j , yv,i
j , w

v,i
j , hv,i

j ) The bounding box of the j-th detection in the i-th
tracklet of camera view v, (xv,i

j , yv,i
j ) is the center

pixel location and (w
v,i
j , hv,i

j ) is the dimension.

T A coupling in the 3D world

k The degree of the STV hyper-graph

νi The i-th node (tracklet) in the STV hyper-graph.

G = (V, E) The STV hyper-graph, where V is the node set and E

is the hyper-edge set, i.e., E ⊂
k

︷ ︸︸ ︷

V × · · · × V
e The k-tuple nodes involved in a hyper-edge, i.e., e =

(ν1, · · · , νk)

π i The i-th connection samples involving k − 1 nodes

β∗ The minimal size of the searched dense subgraph

G∗ = (V∗, E∗) The approximate STV graph, where V∗ is the same
weighted node set as the corresponding STV hyper-
graph G, and E∗ = V∗ ×V∗ is edge set describing the
supports between the nodes

back projected to the 3D world coordinates (X,Y, Z) using
a mapping function, φv(x, y) = (X,Y, Z).

A 3D coupling collects 2D tracklets from different camera
views that potentially correspond to the same trajectory of a
target in the 3D world. Formally, we define a coupling T as a
non-empty subset of

⋃V
v=1 Tv , i.e., ∅ �= T ⊂ ⋃V

v=1 Tv such
that no more than one tracklet from any camera view will be
included, i.e.,
(

T v
i ∈ T

) ∧ (

T v′
i ′ ∈ T

) ⇒ v �= v′. (1)

As such, the maximum total number of unique couplings is
given by

∏V
v=1(nv + 1) − 1. This number is obtained as the

following: from each camera view, at most one tracklet can
be included into the coupling, leaving the total choices for
one view as nv + 1. The total is given by

∏V
v=1(nv + 1) − 1,

where the minus one corresponds to the case that no tracklets
are chosen from any views.

We add another constraint for a coupling constructed by
two ormore 2D tracklets, i.e., for each 2D tracklet included in
the coupling, it must have overlapping frame indices with at
least one other 2D tracklets that are also in the coupling, as:

T v
i ∈ T ⇒ ∃T v′

i ′ ∈ T ∧ tvi ∩ tv
′

i ′ �= ∅. (2)

Note that Eq. (2) is weaker than requiring all 2D tracklets
to have overlapping time, which is justified by the nature of

multi-camera tracking scenario that the target may not be
observed in all camera views due to occlusion.

We define the frame indices of a coupling as the union
of frame indices of its composing 2D tracklets, as tT =
⋃

T v
i ∈T tvi . For each frame of the coupling t ∈ tT , we also

maintain a data structure that backtracks its composing 2D
frame detections at t , as

DT
t = {(v, i, j) : T v

i ∈ T ∧ t ∈ tT ∧ t = tv,i
j }, (3)

where Eqs. (1), (2), and (3) together ensures three conditions:
(i) 2D tracklet T v

i must be included in coupling T , (ii) frame
index t is in the frame indices ofT , and (iii) T v

i has a detection
at frame t . UsingDT

t , we compute the predicted 3D position
of the coupling at t as the average 3D positions obtained from
the corresponding 2D tracklets,

PT
t = 1

|DT
t |

∑

(v,i, j)∈DT
t

φv
(

xv,i
j , yv,i

j

)

, (4)

and the scattering (uncertainty) of the predicted 3D position,

εTt = 1

|DT
t |

∑

(v,i, j)∈DT
t

∥

∥

∥PT
t − φv

(

xv,i
j , yv,i

j

)∥

∥

∥

2
, (5)
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where Eq. (5) is used as a measure of coherence of the set of
2D tracklets in forming the 3D trajectory.

3.2 Affinity Among Couplings

The obtained 3D couplings may correspond to segments of
a longer 3D trajectory belonging to a moving target being
tracked in multiple camera views. To evaluate the likelihood
of a set of couplings in forming a longer trajectory, similar
to Wen et al. (2014), we introduce three affinity measures
for appearances, motion continuity, and trajectory smooth-
ness. As couplings overlapping in time cannot be associated
with one target, we set all affinity measures to zero in that
case. Subsequently, we consider only couplingswith no over-
lapping frame indices in the appearance Eq. (6), motion
continuity Eq. (7), and trajectory smoothness Eq. (8) affini-
ties calculation.
Appearance affinity The appearance affinity between a pair
of non-overlapping couplings T and T ′, with T preceding
T ′, is computed from three image features of detections from
the last frames in T and the first frames in T ′2. The features
we used are histograms of color, gradient and local binary
patterns as in Ojala et al. (2000).

Color affinityψc(T , T ′) = 0, if there is no common cam-
era view between frame detections of the last frame of T
and those of the first frame of T ′. Otherwise, for each com-
mon camera view of the two sets of frames, we extract color
histograms of the corresponding two detections and evalu-
ate their Bhattacharyya distance. ψc(T , T ′) is computed as
the average of such Bhattacharyya distances over all com-
mon views. The similarity based on histograms of gradient
ψs(T , T ′) and local binary patternsψb(T , T ′) are computed
similarly. We denote the correspondence between a hyper-
graph node and a coupling as ν ∼ T . The appearance affinity
of node set ν = (ν1, · · · , νk)with νi ∼ Ti in ascending order
of time is computed as

Ψapp(ν) =
∑

i, j

eλ1ψc(Ti ,T j )+λ2ψs (Ti ,T j )+λ3ψb(Ti ,T j ), (6)

where λ1, λ2 and λ3 are parameters controlling the sensitivity
of the affinity score with regards to each type of appearance
features, and λ1 + λ2 + λ3 = 1.
Motion continuation affinity The motion continuation
affinity between a pair of non-overlapping couplings T and
T ′, with T preceding T ′, is based on the forward-backward
predictions between the last frame detections of T and the
first frame detections of T ′.

We first estimate the “ending” velocity of T by dividing
the difference of 3D positions [computed with Eq. (4)] of

2 The last frame index of T and the first frame index of T ′ may corre-
spond to multiple detections from different camera views.

Fig. 3 aMotion continuation affinity calculation of a pair of couplings.
b Trajectory smoothness affinity calculation of a set of couplings. See
text for more details

its last two frame detections with their corresponding time
lapse. The predicted position for the start of T ′ is obtained
by projecting the 3D position of the last frame detection of
T with the estimated ending velocity, multiplied by the time
lapse between the last frame detection of T and that of the
first frame detection of T ′, Fig. 3a. We then compute the 	2
distance between the actual 3D position of the first frame of
T ′ and its forward prediction from T , as d f p(T , T ′).

Similarly, the backward prediction of the 3D position of
the last frame detection of T is obtained with the 3D position
of the first frame detection of T ′ and the estimated begin-
ning velocity from its first two frame detections, Fig. 3a.
We compute the 	2 distance between the 3D position of the
last frame of T and its backward prediction from T ′, as
dbp(T , T ′). Then the motion continuation affinity of node
set ν = (ν1, · · · , νk)with νi ∼ Ti in ascending order of time
is computed as

Ψmot(ν) =
k−1
∑

i=1

e−λ4

(

d f p(Ti ,Ti+1)+dbp(Ti ,Ti+1)
)

, (7)

where λ4 is the parameter controlling the sensitivity of the
affinity score to the prediction errors.
Trajectory smoothness affinity A common assumption for
visual tracking task is that tracked targets should move con-
tinuously and smoothly for most of the time. The trajectory
smoothness affinity evaluates the spatial-temporal coherence
of a long trajectory formed from a set of non-overlapping
couplings T1, · · · , Tk . Specifically, we first compute the 3D
positions of these couplings with Eq. (4). We then fit a piece-
wise second order smooth parametric trajectory with cubic
spline interpolation to a subset of these 3D positions, which
are sampledwith equal time interval, Fig. 3b. The 	2 distance,
dint(T1, · · · , Tk), of the remaining 3D positions with their
predictions based on the interpolated smooth curve is com-
puted, which evaluates the smoothness of the fitted trajectory
(where small values indicate coherent fit). The trajectory
smoothness affinity score of node set ν = (ν1, · · · , νk)

with νi ∼ Ti in ascending order of time is computed from
dint(T1, · · · , Tk) as

Ψsmo(ν) = e−λ5dint(T1,··· ,Tk ), (8)
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Fig. 4 An example of the constructed STV hyper-graph encoding both
the reconstruction and linking of detected 2D tracklets in different cam-
era views

where parameter λ5 controls the sensitivity of the affinity
score to the deviation of smooth trajectories.

3.3 The Space-Time-View Hyper-graph

The STV hyper-graph G = (V, E) encodes both the recon-
struction and linking of detected 2D tracklets in different
camera views, and is the central data structure of our multi-
camera multi-target tracking method. See Fig. 4 for an
illustrated example.

A node ν in the STV hyper-graph corresponds to a cou-
pling T (as described in Sect. 3.1) and is associated with a
weight reflecting its reliability:

A(ν) = e−λ6 maxt∈tT {εTt −λ7|DT
t |}, (9)

where εTt [from Eq. (5)] is the scattering of coupling T at
frame t , and |DT

t | [see Eq. (3)] is the number of 2D tracklets
associated with the coupling at frame t . λ6 controls the sensi-
tivity of the weight to the reliability score, and λ7 represents
the trade-off between lower scattering and larger number of
associated 2Dviews.Higher nodeweights suggest increasing
likelihood of the composing 2D tracklets corresponding to a
single 3D tracklet. To avoid the case where couplings corre-
sponding to a single 2D view dominate the weight (where the
scattering is always zero), we also penalize couplings with
smaller number of associated 2D views through parameter
λ7.

A hyper-edge in the STV hyper-graph connects multiple
nodes with a weight, whose corresponding couplings poten-
tially form a longer trajectory as shown in Fig. 2c. We only
consider hyper-edge of degree k, i.e., each hyper-edge in STV
hyper-graph is associated with k nodes3.

We enforce two constraints that are important to reduce
the number of hyper-edges. First, for all nodes connected by
one hyper-edge, their couplings should not overlap in time.
Second, we evaluate the distance between the last and first
detections of either pair of couplings in a hyper-edge. If the
distance is significantly larger than the maximum possible
velocity (e.g., < 5 m/s for a pedestrian), then the two nodes
should not be grouped together by a hyper-edge. The weight
of a hyper-edge in STV hyper-graph, e = (ν1, · · · , νk) is
computed using the appearance, motion continuity and tra-
jectory smoothness affinities defined in Sect. 3.2,

W (e) = λ8Ψapp(e) + λ9Ψmot(e) + λ10Ψsmo(e), (10)

where parameters λ8, λ9, and λ10 balance the three types of
affinity scores, and λ8 + λ9 + λ10 = 1.

3.4 Dense Sub-hypergraph Search

We formulate the problem of recovering longer trajectories
of the targets as searching for “dense” sub-hypergraphs on
the STV hyper-graph. Here a dense sub-hypergraph cor-
responds to a group of reliable nodes (couplings) that are
inter-connected with a set of hyper-edges with high weights.
We extend a local search algorithm for dense subgraphs in
graphs (Liu et al. 2012) to search the dense sub-hypergraphs
on the STV hyper-graph. The basic idea is to find a dense
neighborhood for each node in STV hyper-graph and then
remove the conflicts between such neighborhoods to obtain
the longer target trajectories. To accommodate the large
number of nodes in STV hyper-graph, we further employ
a sampling based algorithm to accelerate such search.

3.4.1 Problem Formulation

For a node ν, we denote its neighborhood asN (ν), which is
the set of nodes containing direct neighbors of ν (i.e., con-
nected with one hyper-edge to ν) on the STV hyper-graph.
We then aim to find a subset of N (ν) with β nodes such
that they jointly form an β-subhypergraph4 that has the max-
imum weights combining both the hyper-edges and nodes.
To this end, we introduce an indicator variable zν′ for each
ν′ ∈ N (ν), which is 1/β if ν′ is in a dense sub-hypergraph

3 Note that this is different from the degree of the nodes, which specifies
how many hyper-edges can associate with one node.
4 The β-subhypergraph indicates the sub-hypergraph of STV hyper-
graph, which includes β nodes.
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and 0 otherwise. The search of dense sub-hypergraph can
then be formulated as the following discrete optimization
problem

z∗
ν = argmax

ν′∈N (ν)

∑

e∈Uν

W (e)
∏

ν′∈e
zν′ +

∑

ν′∈N (ν)

A(ν′)zkν′

s.t.
∑

ν′∈N (ν)

zν′ = 1,

∀ν′ ∈ N (ν), zν′ ∈ {0, 1/β}, (11)

in which z∗
ν is the optimal indicator variable vector, consisted

of nonzero zν′ , corresponding to the searched dense sub-
hypergraph, Uν is the hyper-edge set corresponding to the
node set ν ∪N (ν),A(ν) and W (e) are the weights of nodes
in Eq. (9) and hyper-edges in Eq. (10), respectively. The first
term in the objective function encourages the inclusion of
hyper-edges in ν’s sub-hypergraphwith largerweights, while
the second term penalizes the inclusion of nodes correspond
to less reliable couplings indicated by a lowerA(ν). The first
constraint in Eq. (11) requires that the sub-hypergraph should
include β nodes, and the second constraint enforces that the
label can only take two values.

The optimization problem in Eq. (11) is different from
the one formulated for single-camera multi-target tracking
as in Wen et al. (2014). The hyper-graph inWen et al. (2014)
does not have node weights reflecting uncertainty in form-
ing 3D tracklets. Furthermore, the optimization algorithm
in Wen et al. (2014) will run inefficiently if it is directly
applied to solve Eq. (11), due to the large size of our opti-
mization problem. For instance, for three camera views with
each containing ten tracklets, a 3-degree STV hyper-graph

has 103 = 1000 nodes and
(103

3

) ≈ 1.67 × 108 hyper-edges.

3.4.2 Constructing STV Graph

Motivated by Liu and Yan (2012), we propose an approxi-
mate approach to search dense sub-hypergraph for efficient
optimization of Eq. (11), the basic idea is to perform a more
efficient search on a graph approximation to the hyper-graph.
This method thus strikes a balance between the expressive-
ness of the hyper-graph representation and computational
efficiency of the graph approximation.

To be specific, we construct a STV graph to approx-
imate the STV hyper-graph. Then, we search for dense
subgraphsonSTVgraph, fromwhich dense sub-hypergraphs
of STV hyper-graph can be recovered. Unlike in previous
works (Leal-Taixé et al. 2012; Hofmann et al. 2013), we
construct STV graph from STV hyper-graph to explicitly
capture higher-order temporal correlations while maintain-
ing efficacy. We essentially combine the advantages of using
a hyper-graph to capture higher-order correlations and the

Algorithm 1 Constructing the STV Graph.
Input: The node set V = {ν1, · · · , νn} in the STV hyper-graph G =

(V, E).
1: Set the CS set to be empty set.
2: for i = 1 to n do
3: j = 0.
4: while j < ξ do
5: Randomly sample k−2nodes to obtain node set�i fromN (νi )−

{νi }.
6: π i = {νi } ∪ �i .
7: Add π i to the CS set.
8: j = j + 1.
9: end while
10: end for
11: for i = 1 to n · ξ do
12: for j = 1 to n do
13: if The j-th node ν j belongs to π i then
14: The confidence score of the j-th node ν j to the i-th CS π i ,

S j (π i ) = μ.
15: else
16: The confidence score of the j-th node ν j to the i-th CS π i ,

S j (π i ) is calculated as Eq. (12).
17: end if
18: end for
19: end for
20: Set the node set of the STV graph V∗ = V .
21: Set all elements in the weight matrix W ∗ corresponding to all can-

didate edges in STV graph G∗ to zeros.
22: for i = 1 to n · ξ do
23: Obtain the reliable node set Ωi = {ν j |S j (π i ) ≥ μ, j =

1, · · · , n}.
24: Calculate ρi = (|Ωi |−3

k−3

)

.
25: for Each node pair {ν, ν′}, ν, ν′, ν j ∈ Ωi , ν �= ν′, ν �= ν j , and

ν′ �= ν j do
26: W ∗(ν, ν′) = W ∗(ν, ν′) + ρi · S j (π i ).
27: W ∗(ν′, ν) = W ∗(ν′, ν) + ρi · S j (π i ).
28: end for
29: end for
30: Set the edge set in STV graph G∗ to be empty set, i.e., E∗ = ∅.
31: for i = 1 to n − 1 do
32: for j = i + 1 to n do
33: The edge E∗(ν, ν′) is added with the weight W ∗(ν, ν′), iff

W ∗(ν, ν′) > 0.
34: end for
35: end for
Output: The STV Graph G∗ = (V∗, E∗).

computational efficiency of a graph. We analyze the effec-
tiveness of our approach in Sect. 4.

We construct STV graph by keeping all the nodes in STV
hyper-graph and sampling the hyper-edges through a set of
Connection Samples (CSs), {π1, · · · ,π i , · · · }. Each CS π i

is a set of k − 1 nodes from STV hyper-graph, constructed
by traversing each node ν for ξ times, and for each time
randomly select other k − 2 nodes from N (ν) − {ν}. Obvi-
ously, the number of sampled CS pairs is much smaller than
the total number of hyper-edges. Thus, it is more efficient to
search the dense subgraph using sampling strategy than tra-
verse all the hyper-edges inWen et al. (2014). In total, we can
obtain n · ξ sampled CSs, where n is the number of nodes in
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STV hyper-graph. For each node in the STV hyper-graph, we
form a new hypothetical hyper-edge with each CS by pool-
ing all nodes together. The scores of all nodes to a CS π i

are calculated, S(π i ) = {S1(π i ), · · · ,Sn(π i )}. If the j-th
node belongs to π i , we set S j (π i ) to a predefined confidence
score threshold μ. Otherwise, we use

S j (π i ) = λ8 · Ψapp(π i ∪ {ν j }) + λ9 · Ψmot(π i ∪ {ν j })
+ λ10 · Ψsmo(π i ∪ {ν j }). (12)

For each hyper-edge e, we define its approximate weight
after sampling π i as:

W [i](e) = max{W [i−1](e), min
j={1,··· ,k}Sν j (π i )}. (13)

The approximate weight of each hyper-edge satisfies 0 ≤
W [1](e) ≤ · · ·W [i](e) ≤ W (e), where i is the num-
ber of sampled CSs. As i increases, W [i](e) approximates
W (e) gradually. We do not need to store W [i](e) of each
hyper-edge in the sampling procedure. Instead, the scores
{S(π1), · · · ,S(π i ), · · · } are stored. They contain hyper-
edge weight of the included node and CS pairs, which
represent crucial information of our method.

We construct the STV graph G∗ = (V∗, E∗) using the
scores from the nodes and hyper-edges of STV hyper-graph.
Specifically, V∗ is the same weighted node set as the corre-
sponding STV hyper-graph G, and E∗ = V∗ × V∗ is edge
set describing the supports between the nodes. Intuitively, if
two nodes belong to the same dense sub-hypergraph on G,
they are expected to simultaneously appear in several hyper-
edges with large weights. Specifically, for node ν and ν′, we
set the weight of the edge connecting them in STV graph
to reflect the number of hyper-edges including both ν and
ν′ with large weights in the STV hyper-graph, based on
the scores {S(π1), · · · ,S(π i ), · · · }. To exclude the infor-
mation contained in the unreliable hyper-edges, We define
Ωi = {ν j |S j (π i ) ≥ μ, j = 1, · · · , n} to be the reliable
node set with the score larger than μ, where n is the number
of nodes in the STV hyper-graph. Then the weight of the
edge connecting them in STV graph is calculated as

W ∗(ν, ν′) =
n·ξ
∑

i=1

∑

ν,ν′,ν j∈Ωi

ρi · S j (π i ), (14)

where ρi = (|Ωi |−3
k−3

)

is the total number of hyper-edges con-

taining nodes ν and ν′ in the original STV hyper-graph5.
Algorithm1 shows themain steps to construct theSTVgraph.

5 The calculation of the number of hyper-edges, including nodes ν,
ν′ and ν j is a combinational problem, that is to choose k − 3 nodes
from the reliable node set Ωi − {ν, ν′, ν j }. Specifically, we set ρi = 0
for |Ωi | < 3, since there does not exist enough nodes to construct a
hyper-edge in that case.

3.4.3 Dense Subgraph Search on STV Graph

After constructing the STV graph G∗, we search the dense
subgraphs on it to complete the tracking task. Similar to Eq.
(11), the problem is formulated as

z∗
ν = argmax

ν′∈ ˜N (ν)

∑

e∗∈U∗
ν

W ∗(e∗)zνzν′ +
∑

ν′∈ ˜N (ν)

A(ν′)z2ν′

s.t.
∑

ν′∈ ˜N (ν)

zν′ = 1,

∀ν′ ∈ ˜N (ν), zν′ ∈ {0, 1/β}, (15)

where z∗
ν is the optimal indicator variable vector, consisted

of nonzero zν′ , corresponding to the searched dense sub-
hypergraph, e∗ = (ν, ν′) is the edge in the STV graph, ˜N (ν)

is the neighborhood of node ν, U∗
ν is the edge set correspond-

ing to the node set ν ∪ ˜N (ν). We denote the node set of the
searched dense subgraph corresponds to node ν as γ̂ν , and set
γ̂ν = ∅ at first. Then, we can obtain the searched dense sub-
graph corresponding to the node indicator variable z∗

ν , i.e., if
zν′ > 0, we add node ν′ to γ̂ν . Meanwhile, we can also cal-
culate the corresponding confidence score �̂ν of each search
dense subgraph, which is the function value of the objective
in Eq. (15) corresponding to the optimal solution z∗

ν .
Optimization problem in Eq. (15) is an NP-hard discrete

optimization problem (Liu et al. 2012). To reduce its com-
plexity, we relax the discrete constraint zν′ ∈ {0, 1/β} to
its continuous counterpart zν′ ∈ [0, 1/β], and thus convert
Eq. (15) into a continuous optimization problem.Meanwhile,
to avoid degeneracy, we require the minimal size of the sub-
graph to be a fixed number β∗ ≤ minν∈V | ˜N (ν)| ≤ β,
where ˜N (ν) is a set containing the direct neighbors of ν

on the graph G∗. Thus, the constraint is further converted
as zν′ ∈ [0, 1/β∗]. An efficient method based on pair-
wise coordinate update given in Liu et al. (2012) is used
to solve Eq. (15) for each node in G∗ to obtain the dense
subgraphs ̂Γ = {γ̂i }ni=1 and the corresponding confidence
scores �̂ = {�̂i }ni=1, which will be described as follows.

3.4.4 Optimization Using Pairwise Updates

We adopt the pairwise update algorithm to optimize Eq. (15)
as in Liu et al. (2012). The formulation in Eq. (15) is a
constrained optimization problem, we introduce Lagrangian
multipliers a, b1, · · · , bu , and c1, · · · , cu for each variable
zi , i �= ν and i ∈ ˜N (ν), i.e., where a ≥ 0 and bi ≥ 0
and ci ≥ 0 for all i = 1, · · · , u, u is the number of nodes
in the neighborhood ˜N (ν). The Lagrangian of the original
problem Eq. (15) is

M(z, a, b, c) = f (z) − a ·
(

u
∑

i=1

zi − 1

)

+
∑

i,i �=ν

bi · zi
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+
∑

i,i �=ν

ci ·
(

1

β
− zi

)

, (16)

where f (z) = ∑

e∗
i j∈U∗ W ∗

i j ·zi z j+
∑

j∈ ˜N (i) A( j)z2j , e
∗
i j is the

edge connecting node i and j in G∗, z = (z1, · · · , zu) is the
indicator vector (zi = 1

β
means the node i is involved in the

dense subgraph and zi = 0means the node i is excluded from
the dense subgraph), andβ is the number of nodes included in
the searched dense subgraph. Similar to Liu et al. (2012), we
introduce a reward score ri (z) = ∑

l W
∗
il ·zl+ 1

2A(i) at node i
reflecting the total weights of node i to other nodes described
by the indicator z. Then, we have ∂f

∂zi
(z∗) = 2 · ri (z∗), i.e.,

the reward score is proportional to the gradient of f (z) at z.
Any local maxima z∗ must satisfy the Karush-Kuhn-

Tucker (KKT) conditions (Kuhn and Tucker 1951),

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

2 · ri (z∗) − a + bi − ci = 0, i �= ν;
∑

i,i �=ν

z∗i · bi = 0;
∑

i,i �=ν

ci · (1/β − z∗i ) = 0.
(17)

Since z∗i ,bi , and ci are all nonnegative, and
∑

i,i �=ν z
∗
i ·bi = 0,

we have two rewritten constraints: (1) ∀i �= ν, if z∗i > 0, then
bi = 0; (2) ∀i �= ν, if z∗i < 1/β, then ci = 0. Thus, for nodes
i �= ν, the KKT conditions can be further reformulated as:

ri (z∗) =
⎧

⎨

⎩

≤ a/2, z∗i = 0;
= a/2, 0 < z∗i < 1/β;
≥ a/2, z∗i = 1/β.

(18)

Similar to Liu et al. (2012), the node set in G∗ can be divided
into three disjoint subsets, �1(z) = {i |zi = 0}, �2(z) =
{i |zi ∈ (0, 1/β)} and �3 = {i |zi = 1/β}.

Using Theorem 1 in Liu et al. (2012), we increase a com-
ponent zi and decrease z j to increase f (z), as

ẑ =
⎧

⎨

⎩

zl , l �= i, l �= j;
zl + α, l = i;
zl − α, l = j,

(19)

and define ri j = W ∗
i i + W ∗

j j − 2W ∗
i j . Then, we have

Δ f (z) = f (ẑ) − f (z) = (W ∗
i i + W ∗

j j − 2W ∗
i j )α

2

+ 2
(

∑

l

W ∗
il · zl −

∑

l

W ∗
jl · zl

+ 1

2

(

A(i) − A( j)
)
)

α

= ri j · α2 + 2
(

ri (z) − r j (z)
)

α, (20)

where ẑ = (ẑ1, · · · , ẑu), u is the number of nodes in the
neighborhood ˜N (ν). Note that we can assume ri (z) ≥ r j (z),
when ri (z) < r j (z), we can exchange i and j to maxi-

Algorithm 2 Conflict removal of the searched dense sub-
graphs.
Input: The node sets of the searched dense subgraphs ̂Γ = {γ̂i }ni=1

and the corresponding confidence scores �̂ = {�̂i }ni=1.
1: Sort the dense subgraphs in ̂Γ in descending order according the

confidence scores �̂ to get ˜Γ = {γ̃i }ni=1.
2: Initial the dense subgraphs without conflicts Γ ∗ = ∅.
3: for i = 1 to n do
4: if γ̃i ∩ γ ∗

j = ∅, ∀ j , γ ∗
j ∈ Γ ∗ then

5: Γ ∗ ← Γ ∗ ⋃{γ̃i }.
6: else
7: γ ∗

j ← γ ∗
j

⋃

γ̃i .
8: end if
9: end for
Output: The dense subgraphs without conflicts Γ ∗.

mize Δ f (z). α can be calculated based on Eq. (20) and the
constraints over α and z that is α = min(z j , 1/β − zi ), if

ri (z) > r j (z) and ri j ≥ 0;α = min(z j , 1/β−zi ,
r j (z)−ri (z)

ri j
),

if ri (z) > r j (z) and ri j < 0; and α = min(z j , 1/β − zi ), if
ri (z) = r j (z) and ri j > 0. After that, we can compute the
local maximizer z∗ of Eq. (15) by iteratively using the update
strategy Eq. (19) and calculating α based on the discussions
above from any starting points. We adopt the kNN(o) strat-
egy given in Liu et al. (2012) to complete the initialization.
A complete analysis of this algorithm can be found in Liu
et al. (2012).

3.4.5 Conflict Removal and Formation of Long Trajectory

After identifying the node sets of the dense subgraphs ̂Γ

and the corresponding confidence scores �̂ of all nodes,
we use some post-processing strategies to filter out the
conflicts involved in ̂Γ , e.g., one node may appear in mul-
tiple clusters. We use a similar post-processing strategy as
in Wen et al. (2014). We first produce an ordered cluster
set ˜Γ = {γ̃i }ni=1 according to the corresponding confidence
score �̂i in descending order from the searched dense sub-
graphs ̂Γ . Let Γ ∗ be the dense subgraphs without conflicts.
We initialize Γ ∗ = ∅. For the i-th searched dense subgraph
in ˜Γ , i.e., γ̃i ∈ ˜Γ , if γ̃i ∩ γ ∗

j = ∅, ∀ j , γ ∗
j ∈ Γ ∗, we add γ̃i

directly to Γ ∗, i.e., Γ ∗ ← Γ ∗ ⋃{γ̃i }. Otherwise, a greedy
approach is designed by directly adding γ̃i to the existing
clusters γ ∗

j , i.e., γ
∗
j ← γ ∗

j

⋃

γ̃i . Algorithm 2 shows themain
steps to remove the conflicts of searched dense subgraphs.

3.4.6 Handle Long Videos

For long videos (e.g., with more than 500 frames), con-
structing the STV hyper-graph on all couplings and per-
forming search require large memory and computation. To
improve running efficiency, we divide long videos into non-
overlapping segments of fixed length. For each segment,
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Algorithm3Main steps of theSTVhyper-graphbasedmulti-
camera multi-target tracking.
Input: Video sequences captured from multi-camera views synchro-

nouslywith the same frame rate, and the corresponding 2D detection
results of each frame in each camera view.

1: Divide long videos into J non-overlapping segments of fixed length.
2: while J > 1 do
3: for j = 1 to J do
4: Generate the candidate couplings based on the detected tracklets

in each camera view in the j-th segment (§ 3.1) to obtain the
node set V of STV hyper-graph G, i.e., each candidate coupling
corresponds a node in G.

5: Calculate the weights of nodes based on Eq. (9) in G.
6: Construct STV graph according to Algorithm 1 (§ 3.4.2).
7: Search dense subgraphs on STV graph (§ 3.4.3).
8: Remove conflicts in searched dense subgraphs and generate long

tracklets according to Algorithm 2 (§ 3.4.5).
9: end for
10: Merge the neighboring segments and update segment number J .
11: end while
Output: Target long trajectories in the video sequences.

the STV hyper-graph is constructed and the dense sub-
hypergraph search is performed. We then treat the recovered
3D trajectories as a new coupling, and construct a new STV
hyper-graph as Sect. 3.3, from which another round of dense
sub-hypergraph search and trajectory linking are performed.
This procedure continues until the whole video sequence is
merged into a single hyper-graph, where the sub-hypergraph
search yields final trajectories. In addition, to avoid exclu-
sion of correct trajectories generated in previous layers, we
append the nodes that are not included in the searched dense
subgraphs while satisfying the length requirement after the
conflict removal step in each layer. That is, we first con-
sider the set of nodes that are excluded from the detected
dense subgraph set � = {ν1, · · · , νn} − ⋃τ

i=1 γ ∗
i , where

Γ ∗ = {γ ∗
i }τi=1 is the set of detected dense subgraphs. For

θi ∈ �, ifL(θi ) ≥ 	, we add θi to Γ ∗, i.e., Γ ∗ ← Γ ∗ ⋃{θi },
where L(θi ) indicates the trajectory length corresponding to
node θi , and 	 is the preset minimal length of the target trajec-
tory. In this way, the multi-camera multi-target tracking task
can be completed efficiently. Algorithm 3 shows the main
steps of our approach to complete the multi-camera multi-
target tracking task.

4 Experiments

4.1 Dataset

Multi-camera multi-object tracking We evaluate the per-
formance of our approach and compare with several state-of-
the-artmethods on the PETS2009multi-cameramulti-object
tracking dataset Ferryman and Shahrokni (2009), which
includes three video sequences obtained from multiple syn-
chronized cameras:

– S2.L1 low target density, 19 moving pedestrians in 795
frames;

– S2.L2 medium target density, 43 pedestrians spreading
in 436 frames;

– S2.L3high target density, 44 pedestriansmoving together
in 240 frames.

These videos represent practical challenges in multi-target
tracking, including frequent target occlusions, close targets
with similar appearance, and low frame rate (∼7 frame-per-
second). In our experiments, we compare tracking results
using multiple camera views for each of the three PETS
2009 sequences. To make fair comparison, we use frame
detections obtained with the Deformable Part Model (DPM)
algorithm (Felzenszwalb et al. 2008) as the input for all evalu-
ated methods. In the performance evaluation, We use ground
truth annotation provided in Milan et al. (2011).
Single-camera multi-object tracking To demonstrate the
generality of the proposed approach, we also evaluate
our approach on the PETS 2009 single-camera multi-
object tracking dataset (Ferryman and Shahrokni 2009) and
MOTChallenge 2015 single-camera 3D benchmark (Leal-
Taixé et al. 2015). For the PETS 2009 dataset, following
the previous single-camera multi-object tracking meth-
ods (Andriyenko and Schindler 2011; Andriyenko et al.
2012; Wen et al. 2014), we use videos captured by cam-
era #1 of sequences S2L1, S2.L2 and S2.L3 to complete
the tracking task. The MOTChallenge 3D benchmark con-
sists of four sequences captured using a static camera, i.e.,
AVG-TownCentre, PETS 2009-S2.L1, PETS 2009-S2.L2
and TUD-Stadtmitte, with the calibration files used to com-
pute a 2D homography between the image plane and the
ground plane. The PETS 2009-S2.L1 and TUD-Stadtmitte
sequences are used for training, while the remaining two
sequences, i.e., PETS 2009-S2.L2 and AVG-TownCentre,
are used for testing. The DPM algorithm (Felzenszwalb
et al. 2008) is used to generate the input detections for all
trackers in the PETS 2009 dataset evaluation. While for the
MOTChallenge 3D benchmark, the publicly provided input
detection results (Leal-Taixé et al. 2015) are adopted to com-
plete the tracking task.

4.2 Evaluation Metrics

To quantitatively evaluate the performance of both multi-
camera and single-camera multi-target tracking scenarios,
we adopt two CLEAR MOT metrics for multi-target track-
ing (Stiefelhagen et al. 2006): (i) Multi-Object Tracking
Accuracy (MOTA), a consolidated score of false/miss detec-
tion rates of ground truth and identity switches of tracked tra-
jectories; and (ii) Multi-Object Tracking Precision (MOTP),
the average distance between the tracking results and the
ground truth normalized to the hit/miss threshold. TheMOTA
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Fig. 5 a Influence of balance parameters between color histogram, gradient histogram, and local binary pattern features, on tracking performance.
b Influence of balance parameters between appearance, motion, and trajectory smoothness affinities on tracking performance

score is perhaps the widely used figure to evaluate the perfor-
mance of the tracker, since it combines three errors [i.e., False
Negatives (FN), False Positives (FP), and Identity Switches
(IDS)] into a single number (Leal-Taixé et al. 2015). To mea-
sure the performance of the tracker, similar to Andriyenko
et al. (2012),we use the greedy strategy tomatch the locations
of tracked targets and the ground truth within a hit/miss dis-
tance threshold. To describe the performance of the tracker
completely, we plot the MOTA score at the hit/miss distance
thresholds varied from 0 to 2 m. We use the MOTA score
at the hit/miss distance threshold 1 m as the representative
score to rank each tracking algorithm in the MOTA versus
distance curves.

In addition, we also report the the number of the ground
truth trajectories (GT), the ratio of ground truth trajectories
that are tracked for more than 80% of total length (MT),
the ratio of ground truth trajectories that are tracked for less
than 20% of total length (ML), the number of times that
a ground truth trajectory is detected with several separate
trajectories (FM), and the number of times that a tracked
trajectory changes its matched identity (IDS) at the hit/miss
distance threshold 1 meter. To demonstrate the overall per-
formance of the trackers, we follow the evaluation protocol
in Leal-Taixé et al. (2015), which introduces the AvgRank
score indicating the rank of each tracker averaged over all
present evaluation measures with the perfect value 1. The
lower value of AvgRank indicates the better performance.

In previous works, tracking performance on the PETS
2009 dataset has been evaluated in either the whole camera
view (Leal-Taixé et al. 2012; Kuo and Nevatia 2011; Yang
and Nevatia 2012a) or a predefined area in the intersection of

all views (Milan et al. 2014; Wen et al. 2014). In this work,
we use the whole camera view for both single-camera and
multi-camera evaluations, as it is more relevant to practical
tracking scenarios.

4.3 Parameters

We carry out several experiments on PETS 2009 dataset
to study the influence of some important parameters in our
algorithm. Firstly, we evaluate the influence of the trade-off
parameters between color histogram, gradient histogram, and
local binary pattern features in appearance affinity calcula-
tion in Eq. (6), i.e., λ1, λ2, and λ3, on tracking performance.
In our empirical study, we find that the color histogram is
more discriminative than other two features. Thus, we keep
λ1 ≥ λ2 > 0 and λ1 ≥ λ3 > 0. Since λ1 + λ2 + λ3 = 1,
we vary λ1 ∈ [0.4, 0.8] and λ2 ∈ [0.1, 0.4] with interval
0.1, and λ3 = 1 − λ1 − λ2, while keep all other parameters
fixed, and report the changes in the average MOTA score
over three sequences, i.e., S2.L1, S2.L2, and S2.L3, in PETS
2009 dataset with two camera views in Fig. 5a. As presented
in Fig. 5a, we find that our algorithm performs relative sta-
ble with these parameters, i.e., the standard deviation of the
average MOTA score is 1.91%. Based on the maximal value
in Fig. 5a, we set λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1.

Secondly,we evaluate the influenceof the balanceparame-
ters between three types of affinity scores, i.e., appearance
affinity, motion affinity, and trajectory smoothness affinity
in Eq. (10), λ8, λ9, and λ10, on tracking performance, which
is shown in Fig. 5b. To handle the tracking task in crowded
scenes, we take the motion affinity as a more important fac-

123

Author's personal copy



Int J Comput Vis

Fig. 6 Effect of the degree of hyper-graph k (number of nodes asso-
ciated with each hyper-edge) on the tracking performance. The MOTA
score is used to indicate the overall performance of the tracker. Note
that the hyper-graph degenerates to a graph when k = 2

tor. Thus, we keep λ9 ≥ λ8 > 0 and λ9 ≥ λ10 > 0. Since
λ8+λ9+λ10 = 1,wevaryλ8 ∈ [0.1, 0.4] andλ9 ∈ [0.4, 0.8]
with interval 0.1, and λ10 = 1 − λ8 − λ9, while keep all
other parameters fixed. The averageMOTA scores over three
sequences in PETS 2009 dataset with two camera views are
presented in Fig. 5b. Our algorithm is relative stable to these
parameters with 1.63% standard deviation of the average
MOTA score. Based on the maximal value in Fig. 5(b), we
set λ8 = 0.3, λ9 = 0.6, and λ10 = 0.1.

Finally, we conduct experiments to validate the influence
of the degree of hyper-edge k on tracking performance. We
construct STV hyper-graph with k = 2, · · · , 8 while keep-
ing all other parameters fixed, and report the changes in the
average MOTA score over three sequences in PETS 2009
dataset in Fig. 6. As these results show, tracking performance
decreases as k increases when k ≥ 6, because STV hyper-
graphwith hyper-edge degree that is too high fails to describe
themotion patternwell enough, for the case of targetsmoving
in drastically different speed and directions. Thus, we choose
the degree of the hyper-edge k = 3 in our experiments.

For other parameters, we use the following default values
for the parameters in our algorithm. The sensitivity control-
ling parameters of the affinity score to the prediction errors
and the deviation of smooth trajectories in themotion and tra-
jectory smoothness affinity calculations in Eqs. (7) and (8)
are set asλ4 = 0.01 andλ5 = 0.05, respectively.Meanwhile,
the sensitivity controlling parameter of the weight to the reli-
ability score in Eq. (9) is set as λ6 = 1.0, and the trade-off
parameter between the scattering and number of associated
2D views is set as λ7 = 0.01. The minimal size of subgraph
is set as β∗ = 2. We set the score threshold as μ = 0.2 and
the ξ = 5 in CS generation. The minimal length of the target
trajectory 	 = 5, i.e., each tracked trajectory must contain
5 detections. These parameters are chosen empirically, i.e.,

make grid search of one parameter over a range of values
while keep other parameters fixed, and we find that the per-
formance of our algorithm are relatively insensitive to small
perturbations of the parameters.

4.4 Performance Evaluation and Comparison

We evaluate our method on both single-camera and multi-
camera multi-target tracking tasks and discuss the results in
the following sections. We use the same input frame detec-
tions obtained by the DPM algorithm (Felzenszwalb et al.
2008) and the ground truth annotation provided in Milan
et al. (2011) for all the evaluated methods on the PETS 2009
dataset. For the MOTChallenge 2015 3D benchmark, the
publicly provided input detection results (Leal-Taixé et al.
2015) are adopted to complete the tracking task. Our main
purpose here is to discount the difference in the detection
methods, so as to perform a comprehensive evaluation of our
method on the data association part, and provide fair com-
parison with other methods. On the other hand, because of
this setting, performances of many evaluated methods may
differ from their published results.

4.4.1 Multi-Camera Tracking Evaluation

In Table 2 and Fig. 7, we compare quantitative performance
of our method with several state-of-the-art multi-camera
multi-target trackingmethods on the PETS 2009 dataset. The
quantitative results of the trackers shown in Table 2 are cal-
culated with the hit/miss distance threshold 1 m. We include
performances from two existing multi-camera multi-target
tracking methods (Leal-Taixé et al. 2012; Hofmann et al.
2013) for comparison. For a fair comparison,we use the same
frame detections obtained with the DPM algorithm (Felzen-
szwalb et al. 2008) as the input to all methods. However,
we cannot obtain the source code or binary executable that
can reproduce the performances reported in Hofmann et al.
(2013). As such, results in Table 2 are based on our own
implementation of thiswork,with our best effort to follow the
steps given in the original paper, for comparison6. In addition,
for clarification and completeness, we also report the track-
ing results presented in Hofmann et al. (2013) in Table 27.
Some qualitative tracking results of our STV hyper-graph are
presented in Fig. 9.

We highlight several points regarding the quantitative
results inTable 2. Trackingperformance is improvedbyusing
multi-cameras for all three datasets, where the performance

6 We will make our method and our implementation of Hofmann et al.
(2013) along with the tracking results available after the paper decision.
7 Since different input detections and ground truth are used, it is unfair
to directly compare the tracking results of the proposed method with
the results presented in Hofmann et al. (2013).
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Table 2 Multi-camera multi-target tracking results in the PETS 2009
dataset. The tracking results of the methods are obtained by running
the publicly available codes with the same detection results and ground
truth used in our tracker. The number in the bracket of average perfor-

mance indicates the number of cameras used in each tracking scenario.
The symbol ↑ means higher scores indicate better performance while
↓ means lower scores indicate better performance

Sequence Method Camera IDs AvgRank ↓ MOTA[%] ↑ MOTP[%] ↑ GT MT[%] ↑ ML[%] ↓ FM ↓ IDS ↓
PETS S2.L1 Berclaz et al. (2009)† 1+3+5+6+8 - 82.00 56.00 19 - - - -

Hofmann et al. (2013)† 1+5 - 99.40 82.90 - 100.00 0.00 1 1

Hofmann et al. (2013)† 1+5+7 - 99.40 83.00 - 100.00 0.00 1 2

Leal-Taixé et al. (2012) 1+5 - 85.74 67.87 19 89.47 0.00 115 150

Leal-Taixé et al. (2012) 1+5+7 - 82.06 66.23 19 89.47 0.00 125 270

Hofmann et al. (2013)∗ 1+5 - 91.89 79.50 19 94.74 0.00 29 41

Hofmann et al. (2013)∗ 1+5+7 - 91.66 79.40 19 94.74 0.00 31 45

Ours 1+5 - 95.51 80.60 19 100.00 0.00 12 14

Ours 1+5+7 - 95.08 79.80 19 100.00 0.00 13 13

PETS S2.L2 Hofmann et al. (2013)† 1+2 - 87.60 73.50 - 86.00 0.00 128 111

Hofmann et al. (2013)† 1+2+3 - 79.70 74.20 - 69.80 2.30 129 132

Leal-Taixé et al. (2012) 1+2 - 40.14 54.13 43 4.65 9.30 581 621

Leal-Taixé et al. (2012) 1+2+3 - 36.38 53.83 43 2.33 9.30 678 865

Hofmann et al. (2013)∗ 1+2 - 58.97 65.80 43 25.56 2.33 288 385

Hofmann et al. (2013)∗ 1+2+3 - 58.85 66.00 43 30.23 2.33 293 388

Ours 1+2 - 67.00 61.50 43 51.16 0.00 239 239

Ours 1+2+3 - 65.24 61.80 43 44.19 0.00 246 249

PETS S2.L3 Hofmann et al. (2013)† 1+2 - 68.50 72.30 - 54.50 20.50 149 156

Hofmann et al. (2013)† 1+2+4 - 65.40 73.90 - 40.90 25.00 88 116

Leal-Taixé et al. (2012) 1+2 - 48.49 51.74 44 22.73 9.09 250 279

Leal-Taixé et al. (2012) 1+2+4 - 40.22 49.46 44 9.09 15.91 234 300

Hofmann et al. (2013)∗ 1+2 - 54.39 60.20 44 25.00 25.00 67 106

Hofmann et al. (2013)∗ 1+2+4 - 49.79 63.00 44 29.55 25.00 80 123

Ours 1+2 - 57.06 59.30 44 38.64 15.91 120 129

Ours 1+2+4 - 54.39 54.90 44 29.55 20.45 99 92

Average Hofmann et al. (2013) (2)† - - 85.17 76.23 - 80.17 6.83 92.67 89.33

Hofmann et al. (2013) (3)† - - 81.50 77.03 - 70.23 9.10 72.67 83.33

Leal-Taixé et al. (2012) (2) - 4.50 58.12 57.91 - 38.95 6.13 315.33 350.00

Leal-Taixé et al. (2012) (3) - 5.67 52.89 56.51 - 33.63 8.40 345.67 478.33

Hofmann et al. (2013) (2)∗ - 3.33 68.42 68.50 - 48.43 9.11 128.00 177.33

Hofmann et al. (2013) (3)∗ - 3.50 66.77 69.47 - 51.51 9.11 134.67 185.33

Ours (2) - 1.67 73.19 67.13 - 63.27 5.30 123.67 127.33

Ours (3) - 2.17 71.57 65.50 - 57.91 6.82 119.33 118.00

† The tracking results of the methods are copied directly from the published papers. Since different input detections and ground truth are used, it is
unfair to directly compare the tracking results of the proposed method with these results directly copied from the published papers. For clarification
and completeness, we also report them in the table
∗ The tracking results are based on our own implementation of (Hofmann et al. 2013), with our best effort to follow the steps given in the original
paper, and using the same input detections and ground truth as our tracker

gains for videos with higher target densities (S2.L2 and
S2.L3) are particularly significant. This is due to the comple-
mentary information provided from multiple camera views,
which helps to resolve appearance ambiguity and occlusions.
However, performance gain with multi-cameras decreases
in the cases of low target density (S2.L1), where single-
camera tracking already saturates the performance metric.

Yet, further increasing the number of camera views does not
usually lead to a monotonic increase in performances, e.g.,
Leal-Taixé et al. (2012) (2) produces 5.23% larger average
MOTA score than Leal-Taixé et al. (2012) (3), and Ours (2)
produces 1.62% larger average MOTA score than Ours (3).
This is due to errors in camera calibration that lead to inac-
curacies in the mapping function φv . These errors result in
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Fig. 7 Plots of theMOTA scorewith different hit/miss distance thresh-
olds, i.e., varying from 0 to 2000 mm, of our approach and two
state-of-the-artmethods, i.e., Leal-Taixé et al. (2012) andHofmann et al.

(2013), for multi-camera multi-target tracking in PETS 2009 S2.L1,
S2.L2 and S2.L3 sequences. The performance score for each tracker is
presented in the legend

Table 3 Single-camera multi-target tracking results in the PETS 2009
dataset. All methods use the video sequence capture by camera #1 to
complete the tracking task. The tracking results of the methods are
obtained by running the publicly available codes with the same detec-

tion results and ground truth used in our tracker. The symbol ↑ means
higher scores indicate better performance while ↓ means lower scores
indicate better performance

Sequence Method AvgRank ↓ MOTA [%] ↑ MOTP [%] ↑ GT MT [%] ↑ ML [%] ↓ FM ↓ IDS ↓
PETS S2.L1 Breitenstein et al. (2011)† - 75.00 60.00 19 - - - -

Kuo and Nevatia (2011)† - - - 19 78.90 0.00 23 1

Yang and Nevatia (2012a)† - - - 19 89.50 0.00 9 0

Shi et al. (2014)† - 96.10 81.80 19 94.70 0.00 6 4

Dehghan et al. (2015)† - 90.40 63.12 19 95.00 0.00 - 3

Hofmann et al. (2013)† - 98.00 82.80 - 100.00 0.00 11 10

Berclaz et al. (2011) - 75.05 77.00 19 63.16 0.00 63 38

Andriyenko and Schindler (2011) - 73.44 78.20 19 52.63 15.79 15 34

Andriyenko et al. (2012) - 89.05 78.10 19 84.21 0.00 21 26

Pirsiavash et al. (2011) - 81.59 71.80 19 68.42 0.00 71 63

Wen et al. (2014) - 94.43 74.50 19 94.74 0.00 16 13

Leal-Taixé et al. (2012) - 84.90 67.95 19 84.21 0.00 107 101

Hofmann et al. (2013)∗ - 91.57 80.30 19 94.74 0.00 38 52

Ours - 95.44 80.80 19 100.00 0.00 10 10

PETS S2.L2 Hofmann et al. (2013)† - 75.80 72.10 - 65.10 0.00 252 234

Berclaz et al. (2011) - 41.60 63.00 43 2.33 13.95 416 244

Andriyenko and Schindler (2011) - 35.21 69.50 43 9.30 25.58 91 118

Andriyenko et al. (2012) - 49.99 64.30 43 9.30 2.33 261 292

Pirsiavash et al. (2011) - 34.50 69.90 43 9.30 4.65 793 2509

Wen et al. (2014) - 55.32 58.40 43 11.63 2.33 205 141

Leal-Taixé et al. (2012) - 36.03 53.56 43 4.65 11.63 514 508

Hofmann et al. (2013)∗ - 55.11 70.30 43 9.30 6.98 303 350

Ours - 59.15 65.70 43 34.88 0.00 259 239

PETS S2.L3 Hofmann et al. (2013)† - 62.80 70.50 - 54.50 11.40 217 225

Berclaz et al. (2011) - 39.85 60.60 44 15.91 18.18 159 196

Andriyenko and Schindler (2011) - 51.65 57.20 44 29.55 18.18 99 153

Andriyenko et al. (2012) - 46.12 58.90 44 20.45 20.45 126 168

Pirsiavash et al. (2011) - 49.79 65.40 44 27.27 25.00 149 172

Wen et al. (2014) - 50.30 55.10 44 22.73 22.73 47 38
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Table 3 continued

Sequence Method AvgRank ↓ MOTA [%] ↑ MOTP [%] ↑ GT MT [%] ↑ ML [%] ↓ FM ↓ IDS ↓
Leal-Taixé et al. (2012) - 48.90 51.67 44 22.73 11.36 241 224

Hofmann et al. (2013)∗ - 46.60 65.20 44 20.45 34.09 64 88

Ours - 53.36 59.20 44 25.00 18.18 115 100

Average Berclaz et al. (2011) 6.33 52.17 66.87 - 27.13 10.71 212.67 159.33

Andriyenko and Schindler (2011) 4.83 53.43 68.30 - 30.49 19.85 68.33 101.67

Andriyenko et al. (2012) 4.17 61.72 67.10 - 37.99 7.59 136.00 162.00

Pirsiavash et al. (2011) 5.83 55.29 69.03 - 35.00 9.88 337.67 914.67

Wen et al. (2014) 3.00 66.68 62.67 - 43.03 8.35 89.33 64.00

Hofmann et al. (2013)† - 78.87 75.13 - 73.20 3.80 160.00 156.33

Leal-Taixé et al. (2012) 5.83 56.61 57.73 - 37.20 7.66 287.33 277.67

Hofmann et al. (2013)∗ 4.00 64.43 71.93 - 41.50 13.69 135.00 163.33

Ours 2.00 69.32 68.57 - 53.29 6.06 128.00 116.33

† The tracking results of the methods are copied directly from the published papers. Since different input detections and ground truth are used, it is
unfair to directly compare the tracking results of the proposed method with these results directly copied from the published papers. For clarification
and completeness, we also report them in the table
∗ The tracking results are based on our own implementation of (Hofmann et al. 2013), with our best effort to follow the steps given in the original
paper, and using the same input detections and ground truth as our tracker

Fig. 8 Plots of theMOTA scorewith different hit/miss distance thresh-
olds, i.e., varying from 0 to 2000 mm, of our method and several
state-of-the-art methods, i.e., H2T (Wen et al. 2014), DCT (Andriyenko
et al. 2012), CEM (Andriyenko and Schindler 2011), GOG (Pirsiavash

et al. 2011), KSP (Berclaz et al. 2011), Leal-Taixé et al. (2012), and
Hofmann et al. (2013), for single-camera multi-target tracking in PETS
2009 S2.L1, S2.L2 and S2.L3 sequences. The performance score for
each tracker is presented in the legend

incorrect associations that accumulate with increasing frame
detections in multiple views, and lead to incorrect couplings
(false positives), which greatly influence the performance of
the trackers. Although our method is relative more robust to
camera calibration errors than (Leal-Taixé et al. 2012) (the
average MOTA score gap between two camera views and
three camera views is reduced to 1.62 from 5.23%), by inte-
grating the higher-order dependencies among couplings, it is
not entirely satisfactory. Thus, the way to restrain the errors
in camera calibration while exploring effective information
in multi-camera to help tracking is still worth study.

In comparison with the state-of-the-art multi-camera
multi-target tracking algorithms (Leal-Taixé et al. 2012;Hof-
mann et al. 2013) based on associating pairs of 3D couplings,
our method achieves better performance as reflected by low-

est AvgRank score, which is determined by higher MOTA
and MT scores and lower IDS and FM scores. This shows
the effectiveness of using higher-order temporal correla-
tions among couplings encoded by STV hyper-graph, which
greatly reduces the association ambiguities, indicated by the
lower IDS and FM scores.

4.4.2 Single-Camera Tracking Evaluation

PETS 2009 dataset We first evaluate our method in han-
dling the single-camera multi-target tracking task on the first
view of each sequence in PETS 2009 dataset (i.e., S2.L1,
S2.L2, andS2.L3 sequences).We compare our approachwith
several state-of-the-art single-camera multi-target tracking
algorithms (Breitenstein et al. 2011; Kuo and Nevatia 2011;
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Fig. 9 STV hyper-graph tracking results on PETS 2009 videos. We show results using three camera views and two different frames, as well as the
top down view of the overall tracking results. This figure is better viewed in color (Color figure online)
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Table 4 Quantitative results on the single-camera MOTChallenge 3D benchmark (Leal-Taixé et al. 2015)

Method AvgRank MOTA [%] ↑ MOTP [%] ↑ FAF ↓ MT [%] ↑ ML [%] ↓ FP ↓ FN ↓ IDS ↓ FM ↓
DBN Klinger et al. (2015) 1.3 51.1 61.0 2.3 28.7 17.9 2077 5746 380 418

LPSFM Leal-Taixé et al. (2011) 2.7 35.9 54.0 2.3 13.8 21.6 2031 8206 520 601

LP3D Milan et al. (2015) 3.6 35.9 53.3 4.0 20.9 16.4 3588 6593 580 659

KalmanSFM Pellegrini et al. (2009) 4.1 25.0 53.6 3.6 6.7 14.6 3161 7599 1838 1686

Ours 3.3 34.2 55.8 3.5 11.2 25.4 3057 7454 532 611

Yang and Nevatia 2012a; Shi et al. 2014; Dehghan et al.
2015; Berclaz et al. 2011; Leal-Taixé et al. 2012; Hofmann
et al. 2013; Andriyenko and Schindler 2011; Andriyenko
et al. 2012; Pirsiavash et al. 2011; Wen et al. 2014), with the
results presented in Table 3 and Fig. 8. The quantitative track-
ing results shown in Table 3 are calculated with the hit/miss
distance threshold 1 m. As previously mentioned, for a fair
comparison, we use the same frame detections obtained with
the DPM algorithm (Felzenszwalb et al. 2008) as the input
to all methods.

As shown in Table 3 and Fig. 8, our method performs
the best in two sequences, i.e., S2.L2 and S2.L3, while per-
forms competitively in the sequence S2.L1, and achieves the
best performance with the lowest AvgRank score comparing
with the state-of-the-art trackers. Comparing with the pre-
vious methods (Berclaz et al. 2011; Leal-Taixé et al. 2012;
Andriyenko and Schindler 2011; Andriyenko et al. 2012; Pir-
siavash et al. 2011; Hofmann et al. 2013) merely using the
pairwise similarities between tracklets, our method exploits
the higher-order similarities among multiple tracklets in a
hyper-graph such that full motion information can be used to
improve the performance, especially in the crowded scenes,
e.g., S2.L2 (Fig. 9b) and S2.L3 (Fig. 9c) sequences.

In addition, compared toWenet al. (2014), the other hyper-
graph based single-camera trackingmethod, our method also
achieves better performance for single-camera tracking with
2.64 and 10.26% gain of MOTA and MT scores on aver-
age. This is due to the use of calibrated cameras in 3D
space, as depth information from the ground-plane assump-
tion improves the motion and trajectory smoothness affinity
estimations, which improves overall tracking performance.
MOTChallenge 2015 3D benchmark We also report the
experiment results on the MOTChallenge 3D benchmark
(Leal-Taixé et al. 2015) in Table 4. As presented in Table 4,
our approach achieves competitive performance with the
state-of-the-art single-camera 3Dmulti-target trackingmeth-
ods (Leal-Taixé et al. 2011;Milan et al. 2015; Pellegrini et al.
2009; Klinger et al. 2015) according to the AvgRank score.
The algorithm (Klinger et al. 2015) integrates some prior
knowledge of the scenes and learns the object appearance
online using the online random forest classifier, whichmakes
the tracker achieve the best performance. However, using
the complex object appearance model will bring the huge

computational load, which affects the runtime of the algo-
rithm (Klinger et al. 2015), i.e., it runs 0.1 Frame-Per-Second
(fps). Incorporating higher-order connections among track-
lets (i.e., motion constraints can be fully exploited) makes
our approach achieves relative lower IDS and FM scores,
which promotes its performance on single-camera multi-
target tracking scenarios.

4.5 Discussion

Effectiveness of dense subgraphs To have a detailed under-
standing of the contribution of each component of our
method, we construct a baseline tracker that uses pairwise
correlation of 3D couplings (tracklets) as the method (Hof-
mann et al. 2013), and apply the dense subgraph search (Liu
et al. 2012) as the tracking solution. We compare this base-
line algorithm (marked as Ours-P) in Table 5 with our
own implementation of the network flow based optimization
method (Hofmann et al. 2013), for tracking with two camera
views. This baseline algorithm improves 4.17% MOTA and
12.55%MT scores, and reduces 4.57%ML and 29.5% IDS
scores on average performance compared to the network flow
optimization based method (Hofmann et al. 2013), showing
that our formulation of tracking as searching subgraphs or
sub-hypergraphs is important in improving the overall per-
formance.
Effectiveness of hyper-graph representation In addition,
to exploit the effectiveness of hyper-graph representation, we
compare our approach with the baseline tracker, i.e., Ours-
P. Our full method improves 0.7% MOTA and 2.28% MT
score, and reduces 3.38% FM score on average performance
in comparison with the baseline algorithm, which demon-
strates that using hyper-graph as a representation can reduce
the FM score and improve MT score to promote the multi-
target tracking performance.
Running time In addition to its performance, our method
also affords efficient running time. Table 6 reports the run-
ning time measured in fps on the PETS2009 dataset over 1–3
camera views after given the detection results. These running
time is based on an implementation with unoptimized C++
code, single thread execution on a workstation with Intel
2.67GHz CPU and 128 GB memory. Note that, as shown in
Table 6, our method runs faster in S2.L3 than S2.L2 over all
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Table 5 Effect of different components in the proposed tracker. The symbol ↑ means higher scores indicate better performance while ↓ means
lower scores indicate better performance

Sequence Method Camera IDs MOTA [%] ↑ MOTP [%] ↑ GT MT [%] ↑ ML [%] ↓ FM ↓ IDS ↓
PETS S2.L1 Hofmann et al. (2013)∗ 1+5 91.89 79.50 19 94.74 0.00 29 41

Ours-P 1+5 96.40 80.80 19 100.00 0.00 10 6

Ours 1+5 95.51 80.60 19 100.00 0.00 12 14

PETS S2.L2 Hofmann et al. (2013)∗ 1+2 58.97 65.80 43 25.56 2.32 288 385

Ours-P 1+2 63.50 61.70 43 51.16 0.00 252 249

Ours 1+2 67.00 61.50 43 51.16 0.00 239 239

PETS S2.L3 Hofmann et al. (2013)∗ 1+2 54.39 60.20 44 25.00 25.00 67 106

Ours-P 1+2 57.60 59.40 44 31.82 13.63 122 120

Ours 1+2 57.06 59.30 44 38.64 15.91 120 129

Average Hofmann et al. (2013)∗ - 68.42 68.50 - 48.43 9.11 128.00 177.33

Ours-P - 72.50 67.30 - 60.99 4.54 128.00 125.00

Ours - 73.19 67.13 - 63.27 5.30 123.67 127.33

∗ The tracking results are based on our own implementation of Hofmann et al. (2013), with our best effort to follow the steps given in the original
paper, and using the same input detections and ground truth as our tracker

Table 6 The running speed of our method in different sequences with
different camera views. Frame-Per-Second (fps) is used to measure the
speed of the tracker. In comparison, we also show the frame rate of the
original PETS 2009 videos

Sequence 1-view 2-views 3-views PETS frame rate

S2.L1 30.6 16.8 10.9 7.0

S2.L2 7.1 1.8 0.9 7.0

S2.L3 9.0 3.2 2.5 7.0

camera views. Although S2.L3 has higher target density than
S2.L2, the highly complex pedestrian interactions in S2.L2
result in more hyper-edges are included in STV hyper-graph.
Thus, the dense sub-hypergraph search is slower in S2.L2
than that in S2.L3.

5 Conclusion

Incorporating multiple cameras is an effective solution to
improve the performance and robustness of multi-target
tracking to occlusion and appearance ambiguities. In this
paper, we propose a new multi-camera multi-target track-
ing method based on a space-time-view hyper-graph that
encodes higher-order constraints (i.e., beyond pairwise rela-
tions) on 3D geometry, appearance, motion continuity, and
trajectory smoothness among 2D tracklets within and across
different camera views.We solve tracking in each single view
and reconstruction of tracked trajectories in 3D environment
simultaneously by formulating the problem as an efficient
search of dense sub-hypergraphs on the space-time-view
hyper-graph using a sampling based approach. Experimental

results on the PETS 2009 benchmark dataset and MOTChal-
lenge 2015 3D benchmark demonstrate that our method
performs favorably against the state-of-the-art methods in
both single-camera and multi-camera multi-target tracking,
while achieving close to real-time running efficiency. We
also provide experimental analysis of the influence of vari-
ous aspects of our method to the final tracking performance.

There are several directions we would like to further
improve the current work. First, the current method relies
on the knowledge of camera parameters, it is useful to
be able to recover camera parameters along with multi-
target tracking and 3D reconstruction. This is possible with
recent advances that recover camera parameters from mul-
tiple image sequences (Kim et al. 2013); Kostrikov et al.
2014). Second, the current method also assumes a static cam-
era, and a more challenging scenario that we will explore is
when some views are from cameras with ego motion (e.g.,
PTZ cameras). Also, there exist alternative formulations of
the sub-hypergraph search algorithm such as those based on
hyper-graph Laplacians (Zhou et al. 2006). Subsequently we
would like to investigate and compare different optimization
strategies to solve the dense sub-hypergraph search problem.
Last, we would like to push the limit test of multi-camera
tracking methods, and extend similar methods to scenarios
where camera views have less overlapping.
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