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Abstract—Moving cast shadow removal is an important
yet difficult problem in video analysis and applications. This
paper presents a novel algorithm for detection of moving
cast shadows, that based on a local texture descriptor called
Scale Invariant Local Ternary Pattern (SILTP). An assumption
is made that the texture properties of cast shadows bears
similar patterns to those of the background beneath them.
The likelihood of cast shadows is derived using information
in both color and texture. An online learning scheme is
employed to update the shadow model adaptively. Finally,
the posterior probability of cast shadow region is formulated
by further incorporating prior contextual constrains using a
Markov Random Field (MRF) model. The optimal solution is
found using graph cuts. Experimental results tested on various
scenes demonstrate the robustness of the algorithm.

Keywords-shadow removal, local texture descriptor, Markov
Random Field

I. INTRODUCTION

Extracting moving objects is one of the key problems
in video analysis applications, including visual surveil-
lance, content-based video retrieval, etc. The problem is
further plagued by moving cast shadows caused by e.g.
sunlight. Misclassification of moving cast shadows as parts
of foreground objects usually induces problems, such as
silhouette distortions and merging of nearby objects, and
hence mistakes in subsequent stages. An effective moving
shadow detection method is therefore necessary for accurate
extraction of moving objects.

There are a number of cues that provide information
regarding properties and behaviors of cast shadows. A direct
way for modeling cast shadows is based on the assumption
that shadow pixels should have lower luminance and the
same chrominance as the corresponding background. This
attenuation property has been employed in different color
spaces like RGB [1], HSV [2]. Unfortunately, such assump-
tions are difficult to justify in general, especially when pixels
of foreground objects are darker than the reference surface
they cover. Furthermore, it is not reliable to exploit only the
color information of isolated point. Therefore, in addition
to color properties, texture [3] or gradient [4] information
extracted from the spatial domain is used to detect cast
shadows . Some physical models [5] are also used to model
cast shadows. The major limitation of these methods is that
they often require off-line training and need to re-estimate

parameters for each new scene. Consequently, they cannot
handle complex conditions, such as time-varying lighting
conditions, etc. A comprehensive study of moving cast
shadow detection approaches can be found in [6].

Recently, online approaches have been developed to learn
moving cast shadows [7], [8], [9] in color space adaptively.
Compared with the complexity and variability of cast shad-
ows in color spaces, the distribution of texture differentia
is relatively simple, hence we propose to update the cast
shadow model online in the texture space.

In this paper, we propose a novel method for shadow
detection, using a local texture descriptor called Scale In-
variant Local Ternary Patterns (SILTP). Global properties of
cast shadows in both texture and color domains are learned
through the use of Mixture of Gaussian, with an online-EM
update scheme. Contextual constraint from Markov Random
Field (MRF) [10] modeling is further incorporated to obtain
the MAP estimation of the cast shadows. Experimental
results demonstrate the effectiveness and robustness of the
proposed method. The contributions are as follows: Firstly,
SILTP is used as a local texture descriptor for cast shadow
detection, which can deal with the sudden changes of
gray scale intensities caused by environmental illumination
variations. Secondly, an online learning scheme is introduced
to shadow learning process in both texture and color space,
which makes the proposed method more robust to changes
in environments.

II. LEARNING CAST SHADOWS

A flow diagram of the proposed algorithm is illustrated
in Figure 1. For each pixel p, a background model is
learned by the nonparametric KDE method in the RGB
color space [11], from which the foreground probability can
be estimated. Potential moving objects can be extracted by
simply thresholding this density distribution, and within the
segmentation the likelihood probability of cast shadows can
be evaluate over both the color and texture domain as follows

P (MP |S, p) =
∑
i=1,2

P (MP |Di, S, p)P (Di|S, p), (1)

where MP denotes potential moving pixels, S denotes
shadow, D1 and D2 represent the texture and color domains
respectively. The details of the estimation are described in
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Figure 1. Flow diagram of the algorithm

the following subsections.

A. Shadow Model in Texture Space

Under the assumption that the texture within the cast
shadow tends to be similar with that in the corresponding
background surface, in this work we propose to learn a
texture shadow model to discriminate the shadow from
moving objects and update it dynamically.

Tan in [12] proposed a local image texture descriptor
called Local Ternary Pattern (LTP) for face recognition. It
is robust to image noises but not invariant to gray-scale
changes. However, in practice, for surveillance scenario,
there always exist sudden changes of gray scale intensities
due to environmental illumination variations such as shadow.
To address this problem, we extend the original LTP to
the intensity scale invariant LTP (SILTP) for handling cast
shadows.

As shown in Figure 2, for any pixel location (xc, yc),
SILTP can be encoded as

SILTP τ
N,R(xc, yc) =

N−1⊕
k=0

sτ (Ic, Ik), (2)

where Ic is the gray intensity value of the center pixel,
Ik(k = 0, 1, ...N − 1) are that of its N neighborhood pixels
equally spaced on a circle of radius R1,

⊕
is defined as

concatenation operator of binary strings, and sτ denotes a
piecewise function defined as

sτ (Ic, Ik) =


01, if Ik > (1 + τ)Ic,

10, if Ik < (1− τ)Ic,

00, otherwise.

(3)

Since each comparison can result in one of three values,
we encode SILTP with two bits, leaving the value of “11”
undefined. τ is determined by the noise in the scene. The
intensity scale invariant property can be easily verified
from Equ. (3). In real scenarios, illumination variations
always make the gray intensities of neighboring pixels
to be changed simultaneously, from brighter to darker or
conversely, which approximately causes a scale transform
on neighboring pixels with a constant factor. In this case the
proposed SILTP can well encode the illumination-invariant
textures. Figure 3 shows the Hamming distance of SILTP

1In this work, N=8 and R=1 are used for SILTP.
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Figure 2. The SILTP operator
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Figure 3. Hamming distance of SILTP

between the potential moving objects of a frame and the
corresponding background. As can be seen from Figure
3, the cast shadow regions are more similar with the the
corresponding backgrounds (with lower distances), except
that the boundaries have higher distances. Therefore, we
apply Gaussian mixture model (GMM) with two states to
learn a universal likelihood distribution of such distance
as our shadow model in texture space. Consequently, the
likelihood probability P (MP |D1, S, p) of a pixel p being
moving cast shadow can be evaluated by the learned texture
shadow model.

The Expectation Maximization (EM) algorithm is adopted
to estimate the parameters of GMM from different scenes.
Moreover, online-EM is employed to update this universal
GMM model dynamically for a specific scene in real-time
video. Since the distribution of the distance based shadow
likelihood probability in texture space is usually simple
for various scenes, the Online-EM based adaptation can
converge very quickly.

B. Shadow Model in Color Space

Figure 3 shows that SILTP can represent the similarity
between shadows and the corresponding backgrounds, which
can be employed to discriminate cast shadows from moving
objects. Yet it also shows that with SILTP some flat surfaces
of moving objects are also similar with the flat background
regions. However, in this case the surface colors of the two
are different. Therefore, we also learn a color shadow model
as a complement for the previous texture discrimination.

Porikli and Thomton showed that in RGB color space
shadow can be defined as a conic volume around the
corresponding background [9]. Following their work, we
also learn a shadow model in RGB color space. For a moving
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Figure 4. Distribution of (rl, θ)

pixel p, the relationship of the observation pixel vector zt(p)
and the corresponding background pixel vector bt(p) can be
characterized by two parameters [9]: luminance ratio rl(p)
and angle variation θ(p), which are defined as follows :

rl(p) =
∥bt(p)∥

∥zt(p)∥cos(θ(p))
, (4)

θ(p) = arccos(
< zt(p),bt(p) >

∥zt(p)∥ · ∥bt(p)∥
), (5)

where ∥ · ∥is the norm of a vector, and <,> is the inner
product operator. Figure 4 illustrates the distribution of
(rl, θ) collected from shadows of some scenarios. It can
be seen that the two parameters fall within several clusters.
Therefore, we adopt GMM with five components to learn the
above parameter distribution as a color shadow model. The
EM algorithm also apply to learn a universal GMM model
with (rl, θ) samples over shadows of various scenarios.
Then, for a real-time video of a specific scene, we update
it automatically by online learning based on Online-EM al-
gorithm. Finally, the likelihood probability P (MP |D2, S, p)
of cast shadows in color space is estimated by the updated
GMM model.

III. SEGMENTATION FOR THE CAST SHADOW

In the likelihood probability map of cast shadows, if
we deal with each pixel independently, the segmentation
results may contain many small pieces. Consequently, we
build the likelihood probability into an MRF energy func-
tion [10] which considers neighboring smooth information
that will refine the final segmentation. The energy function
is defined as

E(f) =
∑
p∈P

Dp(fp) +
∑

p,q∈N
Vp,q(fp, fq), (6)

where E(f) is the energy of a particular shadow/foreground
labeling f , p and q are indexes over the pixels, Dp(fp)
is the data cost of assigning the pth pixel to label fp,
and Vp,q(fp, fq) represents the smoothness cost of assigning
pixels p and q in a neighborhood N to respective labels
fp and fq. In this work, the data cost assigning shadow is
set as −logP (MP |S, p), while that assigning foreground is

defined as log(1−αP (MP |S, p)), where α is a weighting
factor. The smoothness cost term is defined as

Vp,q = (fp − fq)
2e−β|Ip−Iq| (7)

where Ip and Iq denote gray-scale intensities of pixels p
and q, | · | denotes absolute difference, and β is a constant.
To minimize the energy function of Equ. (6), we apply the
graph cut algorithm [13] for an approximate MAP estimation
of the labeling field, and hence obtain the final segmentation
result.

IV. EXPERIMENT RESULTS

The results presented here are evaluated from challeng-
ing video sequences known in the literature2. We run
experiments only on three benchmark video sequences to
evaluate the effectiveness of the proposed method, where
the quantitative accuracy of other comparison are available.
Figure 5. illustrates the visual results of our method on these
sequences. As shown in Figure 5, moving cast shadows can
be almost completely detected by our approach, except for
some thin mistakes presented around the boundary of cast
shadows in the outdoor sequences. For the indoor sequence,
the soft cast shadows of moving objects can be removed
better by the texture descriptor SILTP. We can also notice
that, thanks to the new descriptor, the moving highlight
reflected on the road is also removed (see Figure 5(1)b).

For a quantitative evaluation, we calculate the accuracy
of the cast shadow detection by using two metrics proposed
in [6]. The shadow detection rate η measures the percent-
age of correctly labeled shadow pixels among all detected
ones, while the shadow discrimination rate ξ measures the
discriminative power between foregrounds and shadows.
The quantitative comparison with both the proposed and
previous approaches are given in Table I. The results of
other’s approaches are taken directly from [7][5][8]. From
Table I, we can see that the proposed method achieves
comparable performance as the state-of-the-art algorithms
in the literature. By using the illumination invariant texture
descriptor SILTP, our approach performs better in the indoor
scene like Hallway, and the outdoor scenario with large cast
shadow regions, such as HighwayI.

Table I
QUANTITATIVE EVALUATION RESULTS

Sequence Highway I Highway II Hallway
Method η% ξ% η% ξ% η% ξ%

Proposed 72.51 84.90 75.38 74.12 82.31 91.07
Physics[7] 70.83 82.37 76.50 74.51 82.05 90.47
Kernel[5] 70.50 84.40 68.40 71.20 72.40 86.70
GMSM[8] 63.30 71.30 58.51 44.40 60.50 87.00

2http://cvrr.ucsd.edn/aton/shadow.
http://vision.gel.ulaval.ca/ CastShadows
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(1) Highway I (2) Highway II (3) Hallway

Figure 5. Visual results in various environments. a|b
c|d (a) Frame from video sequence. (b) Hamming distance of SILTP. (c) Likelihood probability in

color space. (d) Final result using MRF

V. ACKNOWLEDGEMENT

This work was supported by the Chinese National Hi-
Tech (863) Program Projects #2008AA01Z124, and the
AuthenMetric R&D Fund.

VI. CONCLUSIONS AND FUTURE WORK

A novel method for moving cast shadow removal is
presented in this paper. Color and texture information using
SILTP are built into a MRF energy function. Additionally,
with the aid of online-EM process, the shadow model is
updated dynamically. Qualitative and quantitative evaluation
in various experiments validate the effectiveness of our
method. Moreover, our method performs better in the indoor
scenarios. The proposed pixel-based method is suitable for
parallel computing, therefore it can be accelerated by multi-
core and GPU implementations, which will be one of our
future work.
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