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Abstract. Accuracy and efficiency are two conflicting challenges for face detec-
tion, since effective models tend to be computationally prohibitive. To address
these two conflicting challenges, our core idea is to shrink the input image and
focus on detecting small faces. Specifically, we propose a novel face detector,
dubbed the name Densely Connected Face Proposal Network (DCFPN), with
high performance as well as real-time speed on the CPU devices. On the one
hand, we subtly design a lightweight-but-powerful fully convolutional network
with the consideration of efficiency and accuracy. On the other hand, we propose
a dense anchor strategy and a fair L1 loss function to handle small faces well.
As a consequence, our method can detect faces at 30 FPS on a single 2.60GHz
CPU core and 250 FPS using a GPU for the VGA-resolution images. We achieve
state-of-the-art performance on the AFW, PASCAL face and FDDB datasets.
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1 Introduction

Face detection is one of the fundamental problems in computer vision. With the great
progress, face detection has been successfully applied in our daily life. However, there
are still some tough challenges in the uncontrolled face detection problem. The chal-
lenges mainly come from two requirements for face detectors: 1) The large variation
of facial changes requires face detectors to accurately address a complicated face and
non-face classification problem; 2) The large search space of arbitrary face positions
and sizes further imposes a time efficiency requirement. These two requirements are
conflicting, since high-accuracy face detectors tend to be computationally expensive.
To meet these challenges, face detection has been studied mainly in two ways. One
way is cascade based methods and it starts from the pioneering work [1]. After that,
a number of improvements to the Viola-Jones face detector have been proposed in the
past decade [2]. The other way is CNN [3] based methods and some works based on
R-CNN [4] have demonstrated the state-of-the-art performance on face detection tasks.
However, these two ways focus on different aspects. The former tends to great effi-
ciency while the latter cares more about high accuracy. To perform well on both speed
and accuracy, one natural idea is to combine the advantages of them. Therefore, cascade
CNN based methods [5] are proposed that put features learned by CNN into cascade
framework so as to boost the performance and keep efficient. However, there are two
problems in cascaded CNN based methods: 1) Their speed is negatively related to the



number of faces on the image. The speed would dramatically degrade as the number of
faces increases; 2) The cascade based detectors optimize each component separately,
making the training process extremely complicated and the final model sub-optimal.
Therefore, it is still one of the remaining open issues for practical face detectors to
achieve real-time speed on CPU as well as maintain high performance. In this paper,
we develop a state-of-the-art face detector with CPU real-time speed. Our core idea
is to shrink the input image and focus on detecting small faces. Reducing high-
resolution images into low-resolution images can significantly improve the detection
speed, but it also results in smaller faces that need to pay more attention. Specifically,
our DCFPN has a lightweight-but-powerful network with the consideration of efficiency
and accuracy. Besides, we propose a dense anchor strategy and a fair L1 loss to handle
small faces well. As a consequence, for VGA images to detect faces bigger than 40
pixels, the DCFPN can run at 30 FPS on a single CPU core and 250 FPS on a GPU
card. For clarity, the main contributions of this work can be summarized as four-fold:

We develop a novel face detector with real-time speed on the CPU devices;

We design a lightweight-but-powerful fully convolution network for face detection;
We present a dense anchor strategy and a fair L1 loss to handle small faces well,

— We achieve state-of-the-art performance on common face detection benchmarks.

2 Related work

Face detection approaches can be roughly divided into two different categories. One is
based on hand-craft features, and the other one is built on CNN. This section briefly
reviews them and refer more detailed survey to [2,6,7].

Hand-craft based methods. The milestone work of Viola-Jones [1] proposes to
use Haar feature, Adaboost learning and cascade inference for face detection. After
that, many subsequent works focus on new local features [8,9], new boosting algo-
rithms [10,11,12] and new cascade structures [13,14,15]. Besides the cascade frame-
work, the deformable part model (DPM) [16] is introduced into face detection task
by [17,18,19,20,21] , which use supervised parts, more pose partition, better training or
more efficient inference to achieve better performance.

CNN based methods. They show advantages in face detection recently. CCF [22]
uses boosting on top of CNN features for face detection. Faceness [23] trains fully
convolutional networks (FCN) to generate heat map of facial parts and then use the heat
map to generate face proposals. CascadeCNN [5] uses six cascaded CNNS to efficiently
reject backgrounds in three stages. STN [24] proposes a new Supervised Transformer
Network and a ROI convolution for face detection. MTCNN [25] presents a multi-task
cascaded CNNs based framework for joint face detection and alignment.

Generally, hand-craft based methods can achieve real-time speed on the CPU de-
vices, but they are not accurate enough for the uncontrolled face detection problem.
With learned feature and classifier directly from the image, CNN based methods can dif-
ferentiate faces from highly cluttered backgrounds, while they are too time-consuming
to reach real-time speed. Notably, our proposed DCFPN is able to achieve real-time
speed on the CPU devices as well as maintain state-of-the-art detection performance.
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Fig. 1. The structure of DCFPN.

3 Densely connected face proposal network

This section presents detail of DCFPN. It includes three key contributions: the lightweight-
but-powerful architecture, the dense anchor strategy and the fair L1 loss.

3.1 Lightweight-but-powerful architecture

The architecture of DCFPN encourages feature reuse and leads to a substantial reduc-
tion of parameters. As illustrated in Fig. 1, the whole architecture consists of two parts.

Rapidly Digested Convolutional Layers (RDCL). It is designed for high effi-
ciency via quickly reducing the image spatial size by 16 times with narrow but large
kernels. On one side, face detection is a two classification problem and does not require
very wide network, hence the narrow kernels are powerful enough and can result in
faster running speed, especially for CPU devices. On the other side, the large kernels
are to alleviate the information loss brought by spatial size reducing.

Densely Connected Convolutional Layers (DCCL). Each layer in DCCL is di-
rectly connected to every other layer in a feed-forward fashion, and DCCL ends with
two micro inception layers. There are two motivations. Firstly, the DCCL is designed to
enrich the receptive field of the last convolutional layer that is used to predict the detec-
tion results. As listed in Tab. 1, the last convolutional layer of DCFPN has a large scope
of receptive field from 75 to 235 pixels, which is consistent with our default anchors
and is important for the network to learn visual patterns for different scales of faces.
Secondly, the DCCL aims at combining coarse-to-fine information across deep CNN
models to improve the recall rate and precision of detection. Since the information of
the interest region is distributed over all levels of CNN with multiple level abstraction
and they should be well organised.

To sum up, our lightweight-yet-powerful architecture consists of RDCL and DCCL.
The former is designed to achieve real-time speed on the CPU devices. The latter aims at
enriching the receptive fields and combining coarse-to-fine information across different
layers to handle faces of various scales.

Receptive Field ‘ 75 x 75, 107 x 107, 139 x 139, 171 x 171, 203 x 203, 235 x 235
Default Anchor ‘ 16 x 16, 32 x 32, 64 x 64, 128 x 128, 256 x 256

Table 1. The receptive field of the last convolutional layer and the default anchor of our DCFPN.
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Fig. 2. Some illustrations of anchors. (a) 5 default anchors at a center of receptive filed. (b) 16 x 16
anchor densification. (¢) 32 x 32 anchor densification. Best viewed in color.

3.2 Dense anchor strategy

As listed in Tab. 1, we use 5 default anchors that are associated with the last convolu-
tional layer. Hence, these 5 default anchors have the same tiling interval on the image
(i.e., 16 pixels). It is obviously that there is a tiling density imbalance problem. Com-
paring with large anchors (i.e., 64 x 64, 128 x 128 and 256 x 256), small anchors (i.e.,
16 x 16 and 32 x 32) are too sparse, which results in low recall rate of small faces.

To improve the recall rate of small faces, we propose the dense anchor strategy
for small anchor. Specifically, without our dense anchor strategy, there are 5 anchors
for every center of the receptive filed (Fig. 2(a)). To densify one type of anchors, our
strategy uniformly tiles several anchors around the center of one receptive field instead
of only tiling one. As illustrated in Fig. 2(b) and Fig. 2(c), the sampling interval of
16 x 16 and 32 x 32 anchor are densified to 4 and 8 pixels, respectively. Consequently,
for every center of the receptive filed, there are total 23 anchors (16 from 16 x 16 anchor,
4 from 32 x 32 anchor and 3 from the rest three anchors). The dense anchor strategy is
crucial to detect small faces.

3.3 Fair L1 loss

Our model is jointly optimized by two loss functions, L.;s and L;.4, which compute
errors of score and coordinate, respectively. We adopt a 2-class softmax loss for L.
Asfor L,g4, to locate small faces well, we propose the fair L1 loss that directly regresses
the predicted box’s relative center coordinate and its width and height as follows:
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where x, y, w, and h denote the center coordinates and width and height. Variables x,
x?, and x* are for the predicted box, anchor box, and GT box (likewise for y,w,h). The
scale normalization is implemented to have scale-invariance loss value as follows:
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where gt,, and gt;, denote the GT box’s width and height. It equally treats small and
big face by directly regressing box’s relative center coordinate and its width and height.



3.4 Training and implementation details

The DCFPN is trained end-to-end by the stochastic gradient descent (SGD) as follows:

Training labels. Face detection is a face and non-face classification task, and a bi-
nary label (i.e., the positive or negative label) need to be assigned to each anchor during
the training stage. The positive anchor is defined by the following two conditions: (i)
Matching each face to the anchor with the best jaccard overlap; (i) Matching anchors
to any face with jaccard overlap higher than a threshold (usually 0.5). Anchors that do
not be matched by the two conditions are negative anchors.

Training data. Our model is trained on 12880 images from the WIDER FACE [26]
training set. To enrich the training dataset, each training image is sequentially processed
by the color distortion, random cropping, scale transformation and horizontal flipping,
eventually getting a 512 x 512 square sub-image from original image. The groundtruth
bounding box is ignored if its center coordinate is located outside of the square sub-
image. In the training process, each mini-batch is collected randomly from 48 images.
For each mini-batch, all of the positive anchors and half of the negative anchors are
used to train our model.

Implementation details. We randomly initialize all layers by drawing weights from
a zero-mean Gaussian distribution with standard deviation 0.01. We use 0.9 momentum
and 0.0005 weight decay. The maximum number of iterations is 100k, and the initial
learning rate is set to 0.1 and multiplied by 0.1 every 20k iterations. Our model is
implemented in Caffe framework [27].

4 Experiments

In this section, we firstly analyze our model in an ablative way, then evaluate it on the
common face detection benchmarks, finally introduce its runtime efficiency.

4.1 Model analysis

We carry out extensive ablation experiments on the FDDB dataset to analyze our model.
For all the experiments, we use the same settings, except for specified changes to the
components. To better understand DCFPN, we ablate each component one after another
to examine how each proposed component affects the final performance. Firstly, we
replace the fair L1 loss with smooth L1 loss. Meantime, the target of regression is the
same as RPN. Secondly, we ablate the dense anchor strategy. Finally, we take the place
of DCCL with four convolutional layers, which all have 3 x 3 kernel size and whose
output number are 64, 128, 192 and 256, respectively.

Some promising conclusions can be summed up according to the ablative results
listed in Tab. 2. Firstly, the comparison between the first and second columns in Tab. 2
indicates that the fair L1 loss function effectively increases the mAP performance by
0.7%, owning to locating small faces well. Secondly, our dense anchor strategy is used
to increase the density of small anchors (i.e., 16 x 16 and 32 x 32) in order to improve
the recall rate of small faces. From the results listed in Tab. 2, we can observe that
the mAP on FDDB is reduced from 94.5% to 93.7% after ablating the dense anchor
strategy. The sharp decline (i.e., 0.8%) demonstrates the effectiveness of the proposed
dense anchor strategy. Finally, replacing DCCL with plain connection layers results in
0.5% decline, showing the importance of dense connection.



Contribution | DCFPN

Designed architecture? v v v
Dense anchor strategy? v v
Fair L1 loss? v
Accuracy (mAP) ‘ 952 945 937 93.2

Table 2. Ablative results on FDDB. Accuracy means the true positive rate at 1000 false positives.

4.2 Evaluation on benchmark

This section presents the face detection bechmarking using our proposed DCFPN ap-
proach. We compare our results with those of other leading methods.

AFW database [21]. It contains 205 images with 473 labeled faces from Flickr. We
evaluate our detector on this dataset and compare with well known research and com-
mercial face detectors. Research detectors include [18,20,21,23,28]. Commercial detec-
tors include Face.com, Face++ and Google Picasa. As can be observed from Fig. 3(a),
our method outperforms strong all others by a large margin.
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Fig. 3. Precision-recall curves.

PASCAL face database [20]. It consists of 851 images with 1335 labeled faces
and is collected from the test set of PASCAL person layout dataset, which is a subset
of PASCAL VOC. There are large face appearance and pose variations in this dataset.
Note that this dataset is designed for person layout detection and head annotation is
used as face annotation. The cases when the face is occluded are common. Fig. 3(b)
shows that our DCFPN method outperforms all other detectors.

FDDB database [29]. It has 5, 171 faces in 2, 845 images taken from news articles
on Yahoo websites. FDDB uses ellipse face annotations while our DCFPN outputs rect-
angle outputs. This inconsistency has a great impact to the continuous score. For a more
fair comparison under the continuous score evaluation, we regress a transformation ma-
trix according to the ellipse and rectangle annotations, and then transform our rectangle
outputs to ellipse outputs. As shown in Fig. 4(a) and Fig. 4(b), our DCFPN performs



better than all of the published face detection methods, demonstrating that DCFPN is

able to robustly detect unconstrained faces.
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Fig. 4. Evaluation on the FDDB dataset.

4.3 Runtime efficiency

CNN based methods have always been accused of their runtime efficiency. Recent CNN
algorithms are getting faster on high-end GPUs. However, in most practical applica-
tions, especially CPU based applications, they are not fast enough.

Our DCFPN is efficient and accurate enough to meet practical requirements. Specif-
ically, due to the great ability to detect small faces, the proposed DCFPN can shrink the
test images by a few times and detect small faces, so as to reach real-time speed as
well as maintain high performance. This means that faces can be efficiently detected by
shrinking the test image and detecting smaller ones. With this advantage, our method
can detect faces bigger than 40 pixels at 30 FPS on a 2.60GHz CPU for the VGA-
resolution images. Besides, our method with only 3.2M parameter can directly run on a
GPU card at 250 FPS for the VGA-resolution images.

5 Conclusion

In this paper, we propose a novel face detector with real-time speed on the CPU de-
vices as well as high performance. On the one hand, our DCFPN has a lightweight-
but-powerful framework that can well incorporate CNN features from different sizes
of receptive field at multiple levels of abstraction. On the other hand, the dense an-
chor strategy and the fair L1 loss function are proposed to handle small faces well. The
state-of-the-art performance on three challenge datasets shows its ability to detect faces
in the uncontrolled environment. The proposed detector is very fast, achieving 30 FPS
to detect faces bigger than 40 pixels on CPU and can be accelerated to 250 FPS on GPU
for the VGA-resolution images.
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