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Abstract

Softmax loss is arguably one of the most popular
losses to train CNN models for image classifica-
tion. However, recent works have exposed its limi-
tation on feature discriminability. This paper casts a
new viewpoint on the weakness of softmax loss. On
the one hand, the CNN features learned using the
softmax loss are often inadequately discriminative.
We hence introduce a soft-margin softmax function
to explicitly encourage the discrimination between
different classes. On the other hand, the learned
classifier of softmax loss is weak. We propose to
assemble multiple these weak classifiers to a strong
one, inspired by the recognition that the diversity
among weak classifiers is critical to a good ensem-
ble. To achieve the diversity, we adopt the Hilbert-
Schmidt Independence Criterion (HSIC). Consid-
ering these two aspects in one framework, we de-
sign a novel loss, named as Ensemble soft-Margin
Softmax (EM-Softmax). Extensive experiments on
benchmark datasets are conducted to show the su-
periority of our design over the baseline softmax
loss and several state-of-the-art alternatives.

1 Introduction
Image classification is a fundamental yet still challenging task
in machine learning and computer vision. Over the past years,
deep Convolutional Neural Networks (CNNs) have greatly
boosted the performance of a series of image classification
tasks, like object classification [Krizhevsky et al., 2012; He et
al., 2016; Liu et al., 2016], face verification [Wen et al., 2016;
Wang et al., 2015; Zhang et al., 2016; Liu et al., 2017a; Wang
et al., 2017a] and hand-written digit recognition [Goodfellow
et al., 2013; Lin et al., 2013], etc. Deep networks naturally in-
tegrate low/mid/high-level features and classifiers in an end-
to-end multi-layer fashion. Wherein each layer mainly con-
sists of convolution, pooling and non-linear activation, lead-
ing CNNs to the strong visual representation ability as well
as their current significant positions.
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To train a deep model, the loss functions, such as (square)
hinge loss, contrastive loss, triplet loss and softmax loss, etc.,
are usually equipped. Among them, the softmax loss is ar-
guably the most popular one [Liu et al., 2016], which con-
sists of three components, including the last fully connected
layer, the softmax function, and the cross-entropy loss1 . It
is widely adopted by many CNNs [Krizhevsky et al., 2012;
Simonyan and Andrew, 2014; He et al., 2016] due to its sim-
plicity and clear probabilistic interpretation. However, the
works [Liu et al., 2016; Wen et al., 2016; Zhang et al., 2016]
have shown that the original softmax loss is inadequate due to
the lack of encouraging the discriminability of CNN features.
Recently, a renewed trend is to design more effective losses
to enhance the performance. But this is non-trivial because a
new designed loss usually should be easily optimized by the
Stochastic Gradient Descent (SGD) [LeCun et al., 1998a].

To improve the softmax loss, existing works can be mainly
categorized into two groups. One group tries to refine the
cross-entropy loss of softmax loss. Sun et al. [Sun et al.,
2014] trained the CNNs with the combination of softmax loss
and contrastive loss, but the pairs of training samples are dif-
ficult to select. Schroff et al. [Schroff et al., 2015] used
the triplet loss to minimize the distance between an anchor
sample and a positive sample (of the same identity), as well
as maximize the distance between the anchor and a negative
sample (of different identities). However, requiring a mul-
tiple of three training samples as input makes it inefficient.
Tang et al. [Tang, 2013] replaced the cross-entropy loss with
the hinge loss, while Liu et al. [Liu et al., 2017b] employed a
congenerous cosine loss to enlarge the inter-class distinction
as well as alleviate the inner-class variance. Its drawback is
that these two losses are frequently unstable. Recently, Wen
et al. [Wen et al., 2016] introduced a center loss together
with the softmax loss. Zhang et al. [Zhang et al., 2016] pro-
posed a range loss to handle the case of the long tail distri-
bution of data. Both of them have achieved promising re-
sults on face verification task. However, the objective of the
open-set face verification (i.e., mainly to learn discriminative
features) is different from that of the closed-set image classi-
fication (i.e., simultaneously to learn discriminative features
and a strong classifier). The other group is to reformulate the
softmax function of softmax loss.Liu et al. [Liu et al., 2016;

1The details of each component will be described in section 2.1.



2017a] enlarged the margin of the softmax function to encour-
age the discriminability of features and further extended it to
the face verification task. Wang et al. [Wang et al., 2017a]
developed a normalized softmax function to learn discrimina-
tive features. However, for the last fully connected layer2of
softmax loss, few works have considered. The fully convolu-
tional networks [Li et al., 2016] and the global average pool-
ing [Lin et al., 2013; Zhou et al., 2016] aim to modify the
fully connected layers of DNNs, they are not applicable to
the softmax classifier. In fact, for deep image classification,
the softmax classifier is of utmost importance.

Since feature extracting and classifier learning in CNNs are
in an end-to-end framework, in this paper, we argue that the
weakness of softmax loss mainly comes from two aspects.
One is that the extracted features are not discriminative. The
other one is that the learned classifier is not strong. To address
the above issues, we introduce a simple yet effective soft-
margin softmax function to explicitly emphasize the feature
discriminability, and adopt a novel ensemble strategy to learn
a strong softmax classifier. For clarity, our main contributions
are summarized as follows:

• We cast a new viewpoint on the weakness of the original
softmax loss. i.e., the extracted CNN features are insuf-
ficiently discriminative and the learned classifier is weak
for deep image classification.

• We design a soft-margin softmax function to encour-
age the feature discriminability and attempt to assemble
the weak classifiers of softmax loss by employing the
Hilbert-Schmidt Independence Criterion (HSIC).

• We conduct experiments on the datasets of MNIST, CI-
FAR10/CIFAR10+, CIFAR100/CIFAR100+, and Ima-
geNet32 [Chrabaszcz et al., 2017], which reveal the ef-
fectiveness of the proposed method.

2 Preliminary Knowledge
2.1 Softmax Loss
Assume that the output of a single image through deep con-
volution neural networks is x (i.e., CNN features), where x ∈
Rd, d is the feature dimension. Given a mini-batch of labeled
images, their outputs are {x1,x2, . . . ,xn}. The correspond-
ing labels are {y1, y2, . . . , yn}, where yi ∈ {1, 2, . . . ,K} is
the class indicator, and K is the number of classes. Similar
to the work [Liu et al., 2016], we define the complete soft-
max loss as the pipeline combination of the last fully con-
nected layer, the softmax function and the cross-entropy loss.
The last fully connected layer transforms the feature x into
a primary score z = [z1, z2, . . . , zK ]T ∈ RK through mul-
tiple parameters W = [w1,w2, . . . ,wK ] ∈ Rd×K , which
is formulated as: zk = wT

k x = xTwk. Generally speak-
ing, the parameter wk can be regarded as the linear classi-
fier of class k. Then, the softmax function is applied to
transform the primary score zk into a new predicted class
score as: sk = ezk

ezk+
∑K

t 6=k ezt
. Finally, the cross-entropy loss

LS = − log(sy) is employed.

2For convenience, we denote it as softmax classifier.

2.2 Hilbert-Schmidt Independence Criterion
The Hilbert-Schmidt Independence Criterion (HSIC) was
proposed in [Gretton et al., 2005; Wang et al., 2018] to mea-
sure the (in)dependence of two random variables X and Y .
Definition 1 (HSIC) Consider n independent observations
drawn from pxy, Z := {(x1,y1), . . . , (xn,yn)} ⊆ X × Y ,
an empirical estimator of HSIC(Z,F ,G), is given by:

HSIC(Z,F ,G) = (n− 1)−2 tr(K1HK2H), (1)

where K1 and K2 are the Gram matrices with k1,ij =
k1(xi,xj), k2,ij = k2(yi,yj). k1(xi,xj) and k2(yi,yj) are
the kernel functions defined in space F and G, respectively.
H = I−n−111T centers the Gram matrix to have zero mean.
Note that, according to Eq. (1), to maximize the indepen-
dence between two random variables X and Y , the empirical
estimate of HSIC, i.e., tr(K1HK2H) should be minimized.

3 Problem Formulation
Inspired by the recent works [Liu et al., 2016; Wen et al.,
2016; Zhang et al., 2016], which argue that the original soft-
max loss is inadequate due to its non-discriminative features.
They either reformulate the softmax function into a new de-
sired one (e.g., Sparsemax [Martins and Astudillo., 2016] and
L-softmax [Liu et al., 2016] etc.) or add additional con-
straints to refine the original softmax loss (e.g., contrastive
loss [Sun et al., 2014] and center loss [Wen et al., 2016] etc.).
Here, we follow this argument but cast a new viewpoint on
the weakness, say the extracted features are not discrimina-
tive meanwhile the learned classifier is not strong.

3.1 Soft-Margin Softmax Function
To enhance the discriminability of CNN features, we design
a new soft-margin softmax function to enlarge the margin
between different classes. We first give a simple example
to describe our intuition. Consider the binary classification
and we have a sample x from class 1. The original softmax
loss is to enforce wT

1 x > wT
2 x ( i.e., ‖w1‖‖x‖ cos(θ1) >

‖w2‖‖x‖ cos(θ2)) to classify x correctly. To make this ob-
jective more rigorous, the work L-Softmax [Liu et al., 2016]
introduced an angular margin:

‖w1‖‖x‖ cos(θ1) ≥ ‖w1‖‖x‖ cos(mθ1) > ‖w2‖‖x‖ cos(θ2),
(2)

and used the intermediate value ‖w1‖‖x‖ cos(mθ1) to re-
place the original ‖w1‖‖x‖ cos(θ1) during training. In that
way, the discrmination between class 1 and class 2 is ex-
plicitly emphasized. However, to make cos(mθ1) derivable,
m should be a positive integer. In other words, the angu-
lar margin cannot go through all possible angles and is a
hard one. Moreover, the forward and backward computa-
tion are complex due to the angular margin involved. To ad-
dress these issues, inspired by the works [Sun et al., 2014;
Liang et al., 2017; Bell and Bala., 2015], we here introduce a
soft distance margin and simply let

wT
1 x ≥ wT

1 x−m > wT
2 x, (3)

where m is a non-negative real number and is a distance
margin. In training, we employ wT

1 x − m to replace wT
1 x,



thus our multi-class soft-margin softmax function can be de-

fined as: si = e
wT

y xi−m

e
wT

y xi−m
+
∑K

k 6=y ew
T
k

xi
. Consequently, the soft-

Margin Softmax (M-Softmax) loss is formulated as:

LM = − log
ew

T
y xi−m

ew
T
y xi−m +

∑K
k 6=y e

wT
k xi

. (4)

Obviously, when m is set to zero, the designed M-Softmax
loss Eq. (4) becomes identical to the original softmax loss.

3.2 Diversity Regularized Ensemble Strategy
Though learning discriminative features may result in bet-
ter classifier as these two components highly depend on each
other, the classifier may not be strong enough without explic-
itly encouragement. To learn a strong one, as indicted in [Guo
et al., 2017], a combination of various classifiers can improve
predictions. Thus we adopt the ensemble strategy. Prior to
formulating our ensemble strategy, we revisit that the most
popular way to train an ensemble in deep learning is arguably
the dropout [Hinton et al., 2012]. The idea behind dropout is
to train an ensemble of DNNs by randomly dropping the acti-
vations and average the results of the whole ensemble instead
of training a single DNN. However, in the last fully connected
layer of softmax loss, dropout is usually not permitted be-
cause it will lose the useful label information, especially with
the limited training samples. Therefore, we need to design a
new manner to assemble weak classifiers.

Without loss of generality, we take two weak softmax clas-
sifiers Wv = [wv

1 ,w
v
2 , . . . ,w

v
K ] ∈ Rd×K and Wu =

[wu
1 ,w

u
2 , . . . ,w

u
K ] ∈ Rd×K as an example to illustrate the

main idea. Specifically, it has been well-recognized that the
diversity of weak classifiers is of utmost importance to a
good ensemble [Guo et al., 2017; Li et al., 2012]. Here,
we exploit the diverse/complementary information across dif-
ferent weak classifiers by enforcing them to be indepen-
dent. High independence of two weak classifiers Wv and
Wu means high diversity of them. Classical independence
criteria like the Spearmans rho and Kendalls tau [Fredricks
and Nelsen., 2007], can only exploit linear dependence.
The recent exclusivity regularized term [Guo et al., 2017;
Wang et al., 2017b] and ensemble pruning [Li et al., 2012]
may be good candidates for classifier ensemble, but both of
them are difficult to differentiate. Therefore, these methods
are not suitable for assembling the weak softmax classifiers.

In this paper, we employ the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) to measure the independence (i.e.,
diversity) of weak classifiers, mainly for two reasons. One
is that the HSIC measures the dependence by mapping vari-
ables into a Reproducing Kernel Hilbert Space (RKHS), such
that the nonlinear dependence can be addressed. The other
one is that the HSIC is computational efficient. The empir-
ical HSIC in Eq. (1) turns out to be the trace of product of
weak classifiers, which can be easily optimized by the typical
SGD. Based on the above analysis, we naturally minimize the
following constraint according to Eq. (1):

HSIC(Wv,Wu) = (K − 1)−2 tr(KvHKuH). (5)

For simplicity, we adopt the inner product kernel for the pro-
posed HSIC, say K = WTW for both Wv and Wu. Con-
sidering the multiple ensemble settings and ignoring the scal-
ing factor (K − 1)−2 of HSIC for notational convenience,
leads to the following equation:

V∑
u=1;u6=v

HSIC(Wv,Wu) =

V∑
u=1;u 6=v

tr(KvHKuH)

=

V∑
u=1;u6=v

tr(WvHWT
uWuHWT

v ) = tr(WvK
vWT

v ),

(6)
where Kv =

∑V
u=1;u6=v HWT

uWuH, H is the centered ma-
trix defined in section 2.2, and HT = H. However, accord-
ing to the formulation Eq. (6), we can see that the HSIC
constraint is value-aware, the diversity is determined by the
value of weak classifiers. If the magnitude of different weak
classifiers is quite large, the diversity may not be well han-
dled. To avoid the scale issue, we use the normalized weak
classifiers to compute the diversity. In other words, if not
specific, the weak classifiers Wv , where v ∈ {1, 2, . . . , V }
are normalized in Eq. (6). Merging the diversity constraint
into the original softmax loss, leads to Ensemble Softmax (E-
Softmax) loss as:

LE =

V∑
v=1

[
− log

ex
T
i wv

y∑K
k=1 e

xT
i wv

k

+ λ tr(WvK
vWT

v )
]
, (7)

where λ is a hyperparameter to balance the importance of di-
versity. The backward propagation of Wv is computed as
∂LE

∂Wv
= ∂LS

∂Wv
+ λWvK

v . Clearly, the update of the weak
classifier Wv is co-determined by the initializations and other
weak classifiers (i.e., Kv is computed based on other classi-
fiers). This means that the diversity of different weak classi-
fiers will be explicitly enhanced.

Since feature extracting and classifier learning is an end-
to-end framework, we prefer to simultaneously harness them.
Now, putting all concerns, say Eqs. (4) and (6), together
results in our final Ensemble soft-Margin Softmax (EM-
Softmax) loss LEM as follows:
V∑

v=1

[
− log

ex
T
i wv

y−m

ex
T
i wv

y−m +
∑K

k 6=y e
xT
i wv

k

+ λ tr(WvK
vWT

v )
]
.

(8)

3.3 Optimization
In this part, we show that the proposed EM-Softmax loss is
trainable and can be easily optimized by the typical SGD.
Specifically, we implement the CNNs using the well-known
Caffe [Jia et al., 2014] library and use the chain rule to com-
pute the partial derivative of each Wv and the feature x as:

∂LEM

∂Wv
=
∂LS

∂sv

∂sv
∂zv

∂zv
∂Wv

+ λWvK
v,

∂LEM

∂x
=

V∑
v=1

∂LS

∂sv

∂sv
∂zv

∂zv
∂x

,

(9)

where the computation forms of ∂LS

∂sv
, ∂sv
∂zv

∂zv

∂x , ∂zv

∂Wv
are the

same as the original softmax loss.



4 Experiments
4.1 Dataset Description
MNIST [LeCun et al., 1998b]: The MNIST is a dataset of
handwritten digits (from 0 to 9) composed of 28 × 28 pixel
gray scale images. There are 60, 000 training images and 10,
000 test images. We scaled the pixel values to the [0, 1] range
before inputting to our neural network.
CIFAR10/CIFAR10+ [Krizhevsky and Hinton, 2009]: The
CIFAR10 contains 10 classes, each with 5, 000 training sam-
ples and 1, 000 test samples. We first compare EM-Softmax
loss with others under no data augmentation setup. For the
data augmentation, we follow the standard technique in [Lee
et al., 2015; Liu et al., 2016] for training, that is, 4 pixels are
padded on each side, and a 32 × 32 crop is randomly sam-
pled from the padded image or its horizontal flip. In testing,
we only evaluate the single view of the original 32 × 32 im-
age. In addition, before inputting the images to the network,
we subtract the per-pixel mean computed over the training set
from each image.
CIFAR100/CIFAR100+ [Krizhevsky and Hinton, 2009]: We
also evaluate the performance of the proposed EM-Softmax
loss on CIFAR100 dataset. The CIFAR100 dataset is the
same size and format as the CIFAR10 dataset, except it has
100 classes containing 600 images each. There are 500 train-
ing images and 100 testing images per class. For the data
augmentation set CIFAR100+, similarly, we follow the same
technique provided in [Lee et al., 2015; Liu et al., 2016].
ImageNet32 [Chrabaszcz et al., 2017]: The ImageNet32
is a downsampled version of the ImageNet 2012 challenge
dataset, which contains exactly the same number of images
as the original ImageNet, i.e., 1281, 167 training images and
50, 000 validation images for 1, 000 classes. All images are
downsampled to 32× 32. Similarly, we subtract the per-pixel
mean computed over the downsampled training set from each
image before feeding them into the network.

4.2 Compared Methods
We compare our EM-Softmax loss with recently proposed
state-of-the-art alternatives, including the baseline softmax
loss (Softmax), the margin-based hinge loss (HingeLoss
[Tang, 2013]), the combination of softmax loss and center
loss (CenterLoss [Wen et al., 2016]), the large-margin soft-
max loss (L-Softmax [Liu et al., 2016]), the angular margin
softmax loss (A-Softmax [Liu et al., 2017a]) and the normal-
ized features softmax loss (N-Softmax [Wang et al., 2017a]).
The source codes of Softmax and HingeLoss are provided in
Caffe community. For other compared methods, their source
codes can be downloaded from the github or from authors’
webpages. For fair comparison, the experimental results are
cropped from the paper [Liu et al., 2016] (indicated as *) or
obtained by trying our best to tune their corresponding hyper-
parameters. Moreover, to verify the gain of our soft margin
and ensemble strategy, we also report the results of the M-
Softmax loss Eq. (4) and the E-Softmax loss Eq. (7).

4.3 Implementation Details
In this section, we give the major implementation details on
the baseline works and training/testing settings. The impor-
tant statistics are provided as follows:

Figure 1: From Left to Right: The effects parameter λ of EM-
Softmax loss on CIFAR10 and CIFAR100, respectively. The results
are obtained by tuning different λ with V = 2.

Baseline works. To verify the universality of EM-Softmax,
we choose the work [Liu et al., 2016] as the baseline. We
strictly follow all experimental settings in [Liu et al., 2016],
including the CNN architectures (LiuNet3), the datasets, the
pre-processing methods and the evaluation criteria.
Training. The proposed EM-Softmax loss is appended af-
ter the feature layer, i.e., the second last inner-product layer.
We start with a learning rate of 0.1, use a weight decay
of 0.0005 and momentum of 0.9. For MNIST, the learn-
ing rate is divided by 10 at 8k and 14k iterations. For CI-
FAR10/CIFAR10+, the learning rate is also divided by 10 at
8k and 14k iterations. For CIFAR100/CIFAR100+, the learn-
ing rate is divided by 10 at 12k and 15k iterations. For all
these three datasets, the training eventually terminates at 20k
iterations. For ImageNet32, the learning rate is divided by 10
at 15k, 25k and 35k iterations, and the maximal iteration is
40k. The accuracy on validation set is reported.
Testing. At testing stage, we simply construct the final en-
semble classifier by averaging weak classifiers as: W =
1
V

∑V
v=1 Wv . Finally, W is the learned strong classifier and

we use it with the discriminative feature x to predict labels.

4.4 Accuracy vs HyperParameter
The soft-margin softmax function (4) involves one parameter
m. Inspired by [Bell and Bala., 2015], we try a few differ-
ent m ∈ {0.1, 0.5, 1, 5, 10} and select the one that performs
best. Regarding the diversity regularization (6), it involves
the trade-off parameter λ and the ensemble number V . In this
part, we mainly report the sensitiveness of these two vari-
ables on CIFAR10 and CIFAR100. The subfigures of Figure
1 displays the testing accuracy rate vs. parameter λ plot of
EM-Softmax loss. We set V = 2 and vary λ from 0 to 30
to learn different models. From the curves, we can observe
that, as λ grows, the accuracy grows gradually at the very be-
ginning and changes slightly in a relatively large range. The
experimental results are insensitive to λ ∈ [0.01, 1.0]. Too
large λ may hinder the performance because it will degener-
ate the focus of classification part in Eq. (8). Moreover, it
also reveals the effectiveness of the diversity regularization
(λ 6= 0 vs. λ = 0). The subfigures of Figure 2 is the testing
accuracy rate vs. ensemble number V plot of EM-Softmax
loss. We set λ = 0.1 and vary V from 1 to 10. From the
curves, we can see that a single classifier (V = 1) is weak for

3The detailed CNNs for each dataset can be found at https:
//github.com/wy1iu/LargeMargin_Softmax_Loss.



Method MNIST CIFAR10 CIFAR10+ CIFAR100 CIFAR100+

Compared

HingeLoss [Tang, 2013] 99.53* 90.09* 93.31* 67.10* 68.48
CenterLoss [Wen et al., 2016] 99.41 91.65 93.82 69.23 70.97
A-Softmax [Liu et al., 2017a] 99.66 91.72 93.98 70.87 72.23

N-Softmax [Wang et al., 2017a] 99.48 91.46 93.90 70.49 71.85
L-Softmax [Liu et al., 2016] 99.69* 92.42* 94.08* 70.47* 71.96

Baseline Softmax 99.60* 90.95* 93.50* 67.26* 69.15

Our
M-Softmax 99.70 92.50 94.27 70.72 72.54
E-Softmax 99.69 92.38 93.92 70.34 71.33

EM-Softmax 99.73 93.31 95.02 72.21 75.69

Table 1: Recognition accuracy rate (%) on MNIST, CIFAR10/CIFAR10+ and CIFAR100/CIFAR100+ datasets.

Figure 2: From left to right: The effects of ensemble number V on
CIFAR10 and CIFAR100, respectively. The results are obtained by
tuning different ensemble number V with λ = 0.1.

classification. Our EM-Softmax (V ≥ 2) benefits from the
ensemble number of weak classifiers. But the improvement
is slight when the ensemble number V is big enough. The
reason behind this may come from two aspects. One is that
too many classifiers ensemble will bring too much redundant
information, thus the improvement is finite. The other one is
that the discriminative features help to promote weak classi-
fiers, without needing assemble too many classifiers. Based
on the above observations, we empirically suggest V = 2 in
practice to avoid the parameter explosion of weak classifiers.

4.5 Classification Results on MNIST and CIFAR
Table 1 provides the quantitative comparison among all the
competitors on MNIST and CIFAR datasets. The bold num-
ber in each column represents the best performance.

On MNIST dataset, it is well-known that this dataset is typ-
ical and easy for deep image classification, and all the com-
petitors can achieve over 99% accuracy rate. So the improve-
ment of our EM-Softmax is not quite large. From the experi-
mental results, we observe that A-Softmax [Liu et al., 2017a],
L-Softmax [Liu et al., 2016], the proposed EM-Softmax and
its degenerations M-Softmax and E-Softmax outperform the
other compared methods. Moreover, we have achieved a high
accuracy rate 99.73% on this dataset.

On CIFAR10/CIFAR10+ dataset, we can see that our EM-
Softmax significantly boosts the performance, achieving at
least 2% improvement over the baseline Softmax. Consider-
ing all the competitors can achieve over 90% accuracy rate
on this dataset, the improvement is significant. To the soft
distance margin M-Softmax, it is slightly better than the hard
angular margin L-Softmax [Liu et al., 2016] and A-Softmax
[Liu et al., 2017a] because the soft margin can go through

Method Top-1 Top-5

Compared

HingeLoss [Tang, 2013] 46.52 71.56
CenterLoss [Wen et al., 2016] 47.43 71.98
A-Softmax [Liu et al., 2017a] 48.12 72.51

N-Softmax [Wang et al., 2017a] 47.52 72.06
L-Softmax [Liu et al., 2016] 47.85 72.63

Baseline Softmax 46.89 71.94

Our
M-Softmax 48.21 72.77
E-Softmax 48.16 72.99

EM-Softmax 49.22 74.22

Table 2: The top-1 and top-5 recognition accuracy rate (%) on
ImageNet32 validation set.

all possible desired ones. It is much better than Softmax be-
cause of the learned discriminative features. To the ensemble
softmax E-Softmax, it is about 1% higher than the baseline
Softmax because of the assembled strong classifier. Our EM-
Softmax absorbs the complementary merits from these two
aspects (i.e., discriminative features and strong classifier).

On CIFAR100/CIFAR100+ dataset, it can be observed that
most of competitors achieve relatively low performance. The
major reason is that the large variation of subjects, color and
textures and the fine-grained category involve in this dataset.
Even so, our EM-Softmax still reaches significant improve-
ments, at least 5% higher than the baseline Softmax. Com-
pared with the recent L-Softmax [Liu et al., 2016] and A-
Softmax [Liu et al., 2017a], our EM-Softmax can achieve
about 3% improvement. Moreover, we can see a similar trend
as that shown on CIFAR10/CIFAR10+ dataset, that is, the
EM-Softmax loss is generally better than its degenerations
M-Softmax and E-Softmax.

4.6 Classification Results on ImageNet
We report the top-1 and top-5 validation accuracy rates on Im-
ageNet32 in Table 2. From the numbers, we can see that the
results exhibit the same phenomena that emerged on CIFAR
dataset. In particular, the proposed EM-Softmax achieves a
higher top-1 accuracy by 2.4% and top-5 accuracy by 2.2%
in comparison with the baseline Softmax. The improvements
are significant as the imagenet is very large and difficult for
image classification, especially with such a smaller down-
sampled size (32×32). Compared with other competitors, our
EM-Softmax can achieve at least 1% improvement. The re-



Method CIFAR10 CIFAR100
LiuNet 15.1 90.95 15.7 67.26

Full 0.35 83.09 0.71 63.32
AlexNet 113.9 88.76 115.3 64.56

LiuNet+Full+Alex 129.35 90.97 131.71 68.05
LiuNet(48) 9.3 90.63 9.4 66.08
LiuNet(64) 15.1 90.95 15.3 66.70
LiuNet(96) 30.9 91.16 31.0 67.26

LiuNet(48+64+96) 55.4 91.99 55.7 70.01
EM-Softmax 15.2 93.31 31.1 72.74

Table 3: The comparison of model size (MB) | recognition accuracy
rate (%) of different ensemble strategies.

sults presented in Table 2 also reveal that our EM-Softmax
can benefits from the discriminative features (M-Softmax)
and the strong classifier (E-Softmax).

4.7 EM-Softmax vs. Model Averaging
To validate the superiority of our weak classifiers ensem-
ble strategy (i.e., EM-Softmax) over the simple model av-
eraging, we conduct two kinds of model averaging experi-
ments on both CIFAR10 and CIFAR100 datasets. One is
the model averaging of the same architecture but with dif-
ferent numbers of filters (i.e., 48/48/96/192, 64/64/128/256
and 96/96/192/382)4. For convenience, we use CNN(48),
CNN(64) and CNN(96) to denote them, respectively. The
other one is the model averaging of different CNN architec-
tures. We use AlexNet [Krizhevsky et al., 2012] (much larger
than LiuNet [Liu et al., 2016]) and CIFAR10 Full (much
smaller than LiuNet [Liu et al., 2016]) architectures as an
example, which have been provided in the standard Caffe
[Jia et al., 2014] library5. For comparison, all the architec-
tures of these two kinds of model averaging strategies are
equipped with the original softmax loss. Table 3 provides the
experimental results of model averaging on CIFAR10 and CI-
FAR100 datasets, from which, we can see that the strategy of
model averaging is beneficial to boost the classification per-
formance. However, the training is time-consuming and the
model size is large. Compared our weak classifiers ensemble
(EM-Softmax) with these two kinds of model averaging, we
can summarize that the accuracy of our EM-Softmax is gen-
eral higher and our model size is much lower than the simple
model averaging.

4.8 EM-Softmax vs. Dropout
Dropout is a popular way to train an ensemble and has been
widely adopted in many works. The idea behind it is to
train an ensemble of DNNs by randomly dropping the ac-
tivations6 and averaging the results of the whole ensemble.
The adopted architecture LiuNet [Liu et al., 2016] contains
the second last FC layer and is without the dropout. To val-
idate the gain of our weak classifiers ensemble, we add the

464/64/128/256 denotes the number of filters in conv0.x,
conv1.x, conv2.x and conv3.x, respectively.

5https://github.com/BVLC/caffe.
6Thus it cannot be applied to softmax classifier.

Method CIFAR10 CIFAR100
Softmax 90.95 67.26

Softmax+Dropout 91.06 68.01
EM-Softmax 93.31 72.74

EM-Softmax+Dropout 93.49 72.85

Table 4: Recognition accuracy rate (%) vs. Dropout.

Method Training Test Accuracy(GPU) (CPU)
Softmax 0.99h 2.5m 90.90

Softmax+Dropout 0.99h 2.5m 90.96
LiuNet+Full+AlexNet 4.82h 8.1m 90.97

LiuNet(48+64+96) 3.02h 10m 91.99
EM-Softmax 1.01h 3.1m 93.31

Table 5: Recognition accuracy rate (%) vs. Running time (h-hours,
m-minutes) on CIFAR10 dataset.

dropout technique to the second last fully-connected layer
and conduct the experiments of Softmax, Softmax+Dropout
and EM-Softmax+Dropout. The proportion of dropout is
tuned in {0.3, 0.5, 0.7} and the diversity hyperparameter λ of
our EM-Softmax is 0.1. Table 4 gives the experimental results
of dropout on CIAFR10 and CIFAR100 datasets. From the
numbers, we can see that the accuracy of our EM-Softmax is
much higher than the Softmax+Dropout, which has shown the
superiority of our weak classifier ensemble over the dropout
strategy. Moreover, we emperically find that the improve-
ment of dropout on both Softmax and EM-Softmax losses is
not big with the adopted CNN architecture. To sum up, our
weak classifiers ensemble is superior to the simple dropout
strategy and can seamlessly incorporate with it.

4.9 Running Time
We give the time cost vs. accuracy of EM-Softmax, Softmax
and two kinds of model averaging on CIFAR10. From Table
5, the training time on 2 Titan X GPU is about 1.01h, 0.99h,
4.82h and 3.02h, respectively. The testing time on CPU (In-
tel Xeon E5-2660v0@2.20Ghz) is about 3.1m, 2.5m, 8.1m
and 10m, respectively. While the corresponding accuracy is
93.31%, 90.90%, 90.97% and 91.99%, respectively. Consid-
ering time cost, model size and accuracy together, our weak
classifiers ensemble EM-Softmax is a good candidate.

5 Conclusion
This paper has proposed a novel ensemble soft-margin soft-
max loss (i.e., EM-Softmax) for deep image classification.
The proposed EM-Softmax loss benefits from two aspects.
One is the designed soft-margin softmax function to make the
learned CNN features to be discriminative. The other one is
the ensemble weak classifiers to learn a strong classifier. Both
of them can boost the performance. Extensive experiments
on several benchmark datasets have demonstrated the advan-
tages of our EM-Softmax loss over the baseline softmax loss
and the state-of-the-art alternatives. The experiments have
also shown that the proposed weak classifiers ensemble is



generally better than model ensemble strategies (e.g., model
averaging and dropout).
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