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Abstract

Face detection has drawn much attention in recen-
t decades since the seminal work by Viola and Jones. While
many subsequences have improved the work with more pow-
erful learning algorithms, the feature representation used
for face detection still can’t meet the demand for effectively
and efficiently handling faces with large appearance vari-
ance in the wild. To solve this bottleneck, we borrow the
concept of channel features to the face detection domain,
which extends the image channel to diverse types like gradi-
ent magnitude and oriented gradient histograms and there-
fore encodes rich information in a simple form. We adop-
t a novel variant called aggregate channel features, make
a full exploration of feature design, and discover a multi-
scale version of features with better performance. To deal
with poses of faces in the wild, we propose a multi-view
detection approach featuring score re-ranking and detec-
tion adjustment. Following the learning pipelines in Viola-
Jones framework, the multi-view face detector using ag-
gregate channel features shows competitive performance a-
gainst state-of-the-art algorithms on AFW and FDDB test-
sets, while runs at 42 FPS on VGA images.

1. Introduction

Human face detection have long been one of the most
fundamental problems in computer vision and human-
computer interaction. In the past decade, the most influen-
tial work should be the face detection framework proposed
by Viola and Jones [22]. The Viola-Jones (abbreviated as
VJ below) framework uses rectangular Haar-like features
and learns the hypothesis using Adaboost algorithm. Com-
bined with the attentional cascade structure, the VJ detector
achieved real-time face detection at that time. Despite the
great success of the VJ detector, the performance is still far
from satisfactory due to the large appearance variance of
faces in unconstrained settings.
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Figure 1. An intuitive visualization of our multi-view face detec-
tor using aggregate channel features. The area with warmer color
indicates more attention paid to by the detector.

To handle faces in the wild, many subsequences of
VJ framework merged. These methods mainly get the
performance gains in two aspects, more complicated fea-
tures [17, 19, 26] and (or) more powerful learning algo-
rithms [14, 1, 25]. As the combination of boosting and cas-
cade has been proven to be quite effective in face detection,
the bottleneck lies in the feature representation since com-
plicated features adopted in the above literatures bring about
limited performance gains at the cost of large computation
cost.

Lately in another domain of pedestrian detection, a fami-
ly of channel features has achieved record performances [6,
5]. Channel features compute registered maps of the origi-
nal images like gradients and histograms of oriented gradi-
ents and then extract features on these extended channel-
s. The classifier learning process follows the VJ frame-
work pipeline. In this paper, we adopt a variant of chan-
nel features called aggregate channel features [5], which
are extracted directly as pixel values on subsampled chan-
nels. Channel extension offers rich representation capaci-
ty, while simple feature form guarantees fast computation.
With these two superiorities, the aggregate channel features
break through the bottleneck in VJ framework and have the
potential to make great advance in face detection.



As we mainly concentrate our efforts to the feature rep-
resentation rather than learning algorithms in this paper, we
not only just adopt the aggregate channel features in face de-
tection, but also try to explore the full potential of this nov-
el representation. To do so, we make a deep and all-round
investigation into the specific feature parameters concern-
ing channel types, feature pool size, subsampling method,
feature scale and so on, which gives insights into the fea-
ture design and hopefully provides helpful guidelines for
practitioners. Through the deep exploration, we find that:
1) multi-scaling the feature representation further enriches
the representation capacity since original aggregate channel
features have uniform feature scale; 2) different combina-
tions of channel types impact the performance greatly, while
for face detection the color channel in LUV space, plus gra-
dient magnitude channel and gradient histograms channels
in RGB space show best result; 3) multi-view detection is
proven to be a good match with aggregate channel features
as the representation naturally encodes the facial structure
(Figure 1).

Although multi-view detection could effectively deal
with diverse poses, additional issues come up as how to
merge detections output by separately trained subview de-
tectors, and how to deal with the offsets of location and s-
cale between output detections and ground-truth. We solve
these problems by carefully designed post-processing in-
cluding score re-ranking, detection merging and bounding
box adjustment.

The detailed experimental exploration of aggregate
channel features, along with our improvements on multi-
view detection, leads to large performance gain in face de-
tection in the wild. On two challenging face databases,
AFW and FDDB, the proposed multi-view face detector
shows competitive performance against state-of-the-art de-
tectors in both detection accuracy and speed.

The remaining parts of this paper are organized as fol-
lows. Section 2 revisits related work in face detection. Sec-
tion 3 describes how we build the face detector using aggre-
gate channel features. Section 4 addresses problems con-
cerning multi-view face detection. Experimental results on
AFW and FDDB are shown in section 5 and we conclude
the paper in section 6.

2. Related work
Face detection has drawn much attention since the ear-

ly time of computer vision. Although many solutions had
been put forward, it was not until Viola and Jones [22] pro-
posed their milestone work that face detection saw surpris-
ing progress in the past decades. The VJ face detector fea-
tures in three aspects: fast feature computation via integral
image representation, classifier learning using Adaboost,
and the attentional cascade structure. One main drawback
of the VJ framework is that the features have limited repre-

sentation capacity, while the feature pool size is quite large
to compensate for that. Typically, in a 24 × 24 detection
window, the number of Haar-like features is 160,000 [22].
To address the problem, efforts are made in two directions.
Some focus on more complicated features like HoG [26],
SURF [13]. Some aim to speed up the feature selection in
a heuristic way [18, 2]. However, the problem hasn’t been
solved perfectly. In this paper, we mainly focus on the fea-
ture representation part and make a deep exploration into
it, which is complementary to existing work on the learning
algorithm and classifier structure in the VJ framework.

Recently channel features have been proposed and
shown record performance in pedestrian detection [6, 5].
Due to the channel extension to diverse types like gradients
and local histograms, the features show richer representa-
tion capacity for classification. However, the features are
extracted as rectangular sums at various locations and scales
which we believe leads to a redundant feature pool. During
preparation of this paper, Mathias et al. [16] independent-
ly discover the effectiveness of integral channel features in
face detection domain. In this paper, we adopt a novel vari-
ant of channel features called aggregate channel features,
which extract features directly as pixel values in extended
channels without computing rectangular sums at various lo-
cations and scales. The feature has powerful representation
capacity and the feature pool size is only several thousands.
Through careful design in section 3 and implementation of
multi-view detection in section 4, the aggregate channel fea-
tures based detector achieves state-of-the-art performance
on challenging databases.

3. Proposed face detector
In this section, we make a full exploration of the aggre-

gate channel features in the context of face detection. We
first give a brief introduction of the feature itself, including
its computation, properties and advantages over traditional
Haar-like features used in VJ framework. Then the detailed
experimental investigation is described in two parts, feature
design and training design. Before that, some guidelines
concerning how we conduct the investigation are demon-
strated. Each design part is divided into several separate ex-
periments ended with a summary explaining the specific pa-
rameters used in our proposed face detector. Note that each
experiment focuses on only one parameter and the others
remain constant. Through the well-designed experiments,
the proposed face detector based on aggregate channel fea-
tures is built step by step. Issues concerning the implemen-
tation of multi-view face detection which further improves
the performance are discussed in the next section.

3.1. Feature description

Channel extension: The basic structure of the aggre-
gate channel features is channel. The application of channel



Figure 2. Work-flow of proposed face detector.

has a long history since digital images were invented. The
most common type of channel should be the color chan-
nels of the image, with Gray-scale and RGB being typical
ones. Besides color channels, many different channel types
have been invented to encode different types of informa-
tion for more difficult problems. Generally, channels can
be defined as a registered map of the original image, whose
pixels are computed from corresponding patches of original
pixels [6]. Different channels can be computed with linear
or non-linear transformation of the original image. To al-
low for sliding window detection, the transformations are
constrained to be translationally invariant.

Feature computation: Based on the definition of chan-
nels, the computation of aggregate channel features is quite
simple. As shown in Figure 2, given a color image, all
defined channels are computed and subsampled by a pre-
set factor. The aggregate pixels in all subsampled channels
are then vectorized into a pixel look-up table. Note that an
optional smoothing procedure can be done on each chan-
nel with a binomial filter both before computation and after
subsampling.

Classifier learning: The learning process is quite sim-
ple. Two changes are made compared with VJ framework.
First is that weak classifier is changed from decision stump
to depth-2 decision tree. The more complex weak classifier
shows stronger ability in seeking the discriminant intra and
inter channel correlations for classification [15]. Second d-
ifference is that soft-cascade [1] structure is used. Unlike
the attentional cascade structure in VJ framework which has
several cascade stages, a single-stage classifier is trained on
the whole training data and a threshold is then set after each
weak classifier picked by Adaboost. These two changes
lead to more efficient training and detection.

Overall superiority: Compared with traditional Haar-
like features used in VJ framework, aggregate channel fea-
tures have the following differences and advantages: 1) The
image channels are extended to more types in order to en-
code diverse information like color, gradients, local his-
tograms and so on, therefore possess richer representation
capacity. 2) Features are extracted directly as pixel values
on downsampled channels rather than computing rectangu-

lar sums with various locations and scales using integral
images, leading to a faster feature computation and small-
er feature pool size for boosting learning. With the help
of cascade structure, detection speed is accelerated more.
3) Due to its structure consistence with the overall image,
when coupled with boosting method, the boosted classifier
naturally encodes structured pattern information from large
training data (see Figure 1 for an illustration), which gives
more accurate localization of faces in the image.

3.2. Investigation guidelines

All investigations are trained on the AFLW face
database1 [10] and tested on the Annotated Faces in the
Wild (AFW) testset2. To make it clear, there are in total
36, 112 positive samples and 108, 336 negative samples s-
elected from AFLW which are kept constant in all investi-
gations. Testset contains 205 natural images with faces that
vary a lot in pose, appearance and illumination.

To alleviate the ground-truth offset caused by different
annotation styles (Figure 4) in training and testing set and
make the evaluation more comparable, a lower Jaccard in-
dex3 with threshold 0.3 is adopted in comparative evalua-
tion. Practically the lower threshold won’t cause errors be-
ing mistakenly corrected. Note that in final evaluation of the
proposed face detector (section 5), the AFW testset, togeth-
er with another face benchmark FDDB database, are used
as testbed and the evaluation metric follows the database
protocol.

3.3. Feature design

To fully exploit the power of aggregate channel features
in face detection domain, a deep investigation into the de-
sign of the feature is done mainly on channel types, win-
dow size, subsampling method and feature scale. Results of
comparative experiments are shown in Figure 6.

Channel types: Three types of channels are used, which
are color channel (Gray-scale, RGB, HSV and LUV), gra-
dient magnitude, and gradient histograms. The computation
of the latter two channel types could be seen as a general-
ized version of HoG features. Specifically, gradient magni-
tude is the biggest response on all three color channels, and
oriented gradient histograms follow the idea of HoG in that:
1) rectangular cell size in HoG equals the subsampling fac-
tor in aggregated channel features; 2) each orientation bin
results in one feature channel (6 orientation bins are used
in this paper). Figure 6 (a)˜(c) show how much each of
these three types alone contributes to the performance of
face detection. It can be seen that the gradient histograms
contribute most to the performance among all three channel

1http://testsetlrs.icg.tugraz.at/research/aflw/
2http://www.ics.uci.edu/˜xzhu/face/
3The Jaccard index is defined as the size of the intersection divided by

the size of the union of the sample sets.

http://testsetlrs.icg.tugraz.at/research/aflw/
http://www.ics.uci.edu/~xzhu/face/


types. Figure 6 (d) shows the performances of combinations
of these three types computed on different color channels.

Detection window size: Detection window size is the s-
cale to which we resize all face and non-face samples and
then train our detector. Larger window size includes more
pixels in feature pool and thus may improve the face detec-
tion performance. On the other hand, too large window will
miss some small faces and diminish the detection efficien-
cy. Figure 6 (e) shows comparison of window size ranging
from 32 to 112 with a stride of 16 pixels.

Subsampling: The factor for subsampling can be re-
garded as the perceptive scale for that it controls the scale at
which the aggregation is done. Changing the factor from
large to small leads to the feature representation shifting
from coarse to fine and the feature pool size getting bigger.
Experiments on different subsampling factors are shown in
Figure 6 (f). In original aggregate channel features, the way
to do subsampling is average pooling. Following the idea in
Convolutional Neural Networks, another two ways of sub-
sampling, max pooling and stochastic pooling [24] are test-
ed in Figure 6 (g).

Smoothing: As described in feature description, both
pre and post smoothing is done in default setting of aggre-
gate channel features. A binomial filter with a radius of
1 is used for smoothing. The smoothing procedure also
has a great influence on the scale of the feature represen-
tation. Concretely, pre-smoothing determines how far the
local neighborhood is in which local correlations are en-
coded before channel computation, while post-smoothing
determines the neighborhood size in which the computed
channel features are integrated with each other. In [6], the
former corresponds to the ‘local scale’ of the feature, while
the latter represents the ‘integration scale’. We vary the fil-
ter radius used in pre and post smoothing and find that both
using a radius of 1 gets the best results. Figure 6 (h)˜(i)
present the comparative results.

Multi-scale: In aggregate channel features, although
hidden information at different scale could be extracted at
a cost of more weak classifiers, it would be better to make
the integrated channel features multi-scaled and thus make
themselves more discriminant. Therefore the same or better
classification performance can be achieved with fewer weak
classifiers. In this part, we implement three multi-scale ver-
sion of aggregate channel features in the aforementioned
three kinds of scale, perceptive scale (subsampling), local s-
cale (pre-smoothing) and integration scale (post-smoothing)
and compare their performaces. See results in Figure 6
(j)˜(l).

Summary: The color channel, gradient magnitude and
gradient histograms prove themselves a good match in ag-
gregate channel features. However, different choices of col-
or channel used and on which gradients are computed have
a great impact on performance. According to the experi-

ments, LUV channel and gradient magnitude and 6-bin his-
tograms computed on RGB color space (in total 10 chan-
nels) are the best choice for face detection.

Larger detection window size generally gets better per-
formance, but will miss many small faces in testing and
lead to inefficient detection. In this work, we set the size
to 80× 80 as its optimal performance.

A subsampling factor of 4 is most reasonable according
to the experiments, while different pooling methods show
small differences. However, max pooling and stochastic
pooling are much slower than average pooling, therefore the
average pooling becomes the best match for the sake of ef-
ficiency. In this way, the resulting feature pool size of our
face detector is (80/4)× (80/4)×10 = 4000, considerably
smaller than that in VJ framework.

As for multi-scale version of aggregate channel features,
multi-local-scale with an additional scale of radius 2 shows
the best performance. The probable reason is that pre-
smoothing controls the local scale of the neighborhood fea-
ture correlations and therefore matches the intuition insid-
e multi-scale best. Compared with other fine-tuning, the
multi-scale version has a notable performance gain for that
it makes up for the scale uniformity caused by subsampling
to some extent. One main drawback is that it doubles the
feature pool size and as a result slows down the detection
speed somewhat. Based on the trade-off, we implement t-
wo face detectors with different scale settings, one is single-
scaled with faster speed and the other is multi-scaled with
better accuracy. We evaluate and discuss the performances
of these two versions in detail in section 5.

3.4. Training design

Besides careful design of the aggregate channel features,
experiments on the training process which is similar to that
in VJ framework are also carried out. The differences are
that the weak classifier is changed into depth-2 decision tree
and soft-cascade [1] structure is used. Details of the training
design are as follows.

Number of weak classifiers: Given a feature pool size
of 4, 000, we vary the number of weak classifiers con-
tained in the soft-cascade. In Figure 3 performances of var-
ious numbers of weak classifiers ranging from 32 to 8192
are displayed, which shows that apparently more classifier-
s generate better performance, and when the number gets
larger the performance begins to saturate. Since more clas-
sifiers slow down the detection speed, there’s a trade-off be-
tween accuracy and speed. Searching for the saturate point
as the optimal is significant during training in such frame-
work.

Training data: Empirically, more training data will get
better performance given powerful representation capacity.
In this case, AFLW database is used as the only positive
training data. However, as images in AFLW database are



Figure 3. Comparison of different numbers of weak classifier in
the soft cascade.

very salient and the background has very less variance, neg-
ative samples cropped from the AFLW database can’t rep-
resent the real world scenario well, which limits the face
detection performance in the wild. In this part, we further
use PASCAL VOC 2007 database and randomly crop win-
dows from images without person as the new negative sam-
ples. Experiments show that the new training data contain-
ing cluttered background significantly improve the perfor-
mance with 4.1%.

Summary: Based on observations above, we choose
2048 as the number of weak classifiers contained in the soft
cascade. As each weak classifier is a depth-2 decision tree,
it takes only two comparing operations to apply a weak clas-
sifier, which is quite fast. During training, as negative data
is large, we adopt a standard Bootstrap procedure to sam-
ple hard negative samples from PASCAL VOC 2007 in the
implementation of the proposed face detector.

4. Multi-view detection

Human faces in real world usually have highly varied
poses. In AFLW database, the human pose is divided into
three aspects: 1 in-plane rotation ‘roll’ and 2 out-of-plane
rotations ‘yaw’ and ‘pitch’. Because of this large variance
in face pose, it is difficult to train a single view face detec-
tor to handle all the poses effectively. A multi-view detec-
tion is further examined in this part. Due to the adoption of
soft-cascade structure, a multi-view version of face detec-
tor won’t cause too much computation burden. Typically,
we divide the out-of-plane rotation yaw into different views
and let the classifier itself tolerate the pose variance in the
other two types of rotations.

Adopting multi-view detection also brings about many
troublesome issues. If handled improperly, the performance
will differ greatly. First, detectors of different view will
each produce a set of candidate positive windows followed
with a set of confidence scores. For application purpose, we
need to merge these detections from different views and al-
so remove duplicated windows. A typical approach is Non-
Maximum Suppression (NMS) [3]. An issue rises on how
to compare confidence scores from different classifiers and
how to do window merging in the trade-off between high

Figure 4. Illustration of different ground-truth annotation styles in
databases, the view partition and symmetric detection adjustmen-
t. Rectangles with red and green color correspond to detections
before and after adjustment.

precision rate and high detection rate. Second, as for de-
tection evaluation, usually the overlap of bounding boxes is
used as the criterion. However, annotations in different data
sets may not have a consistent style (Figure 4 (a)). This di-
versity suffers more in profile faces. Since our face detector
is trained and tested on different data sets, this issue impact-
s the performance a lot. Third, detectors of different views
need to be trained with different samples separately. How
to divide the views therefore becomes another concerning
problem. In this section, we address the above three issues
successfully by careful designs and therefore fully exploit
the advantage of multi-view detection.

4.1. View partition

In the scenario of detecting faces in the wild, pose vari-
ation caused by yaw is usually severer than pitch and roll.
Therefore we divide the faces in AFLW database according
to yaw angle. We have 6 subviews which are horizontally
symmetric (see Figure. 4 (b)) because we flip each image
in the training set. Specifically, there are 6630, 8446, 9610,
9610, 8446, 6630 images in views from 1 to 6. Benefitting
from the symmetry of our model, we can only train three
subview detectors of the right side for simplicity, and use
these trained right-side detectors to generate the left-side
detectors. Detections of all six detectors are then merged to
get the final detections. Though multi-view detection sig-
nificantly improves the detection performance (especially
the recall rate), the post-processing of detections from dif-
ferent detectors becomes a trouble. If handled improperly,
the performance degrades a lot.

4.2. Post-processing

Difficulties in the post-processing of multi-view detec-
tion mainly reflect on the following aspects: 1) different
score distributions and; 2) different bounding box styles.



Concretely, as each subview detector is trained separately,
their output confidence scores usually have different dis-
tributions. What’s more, due to the annotation rule in the
AFLW database that the face’s nose is approximately at the
center location of the bounding box ground-truth, as the
subview changes, the bounding box shifts. This bound-
ing box offset causes difficulty both in detection merging
and final evaluation using Jaccard index metric. To solve
these annoying issues and make the best use of multi-view
detection, we introduce the following methods for post-
processing.

Score re-ranking: We propose the following three kind-
s of score re-ranking: 1) normalizing scores of different
views to [0, 1]; 2) defining a new score that has uniform
distribution and; 3) taking overlapping detections into con-
sideration.
Normalization: After training a classifier, calculate the
output range of the classifier and use the range to do nor-
malization later so that output score has a range of [0, 1].
NewScore: Originally, each weak classifier in the soft-
cascade owns a score and final score is the sum of all scores.
Instead, we use the number of weak classifier that the im-
age patch passed positively as the new score. Therefore the
upper limit of the new score is 2048 in our case.
OverlapRerank: Given an image, multiple detections
from multi-view detectors exist each with a score. For each
detection, we first calculate the number of overlapped de-
tection it has (overlap threshold is 0.65) and then multiply
score of each detection with a factor of its overlapping num-
ber ranking1.
SumofOverlap: Instead of using overlapping as a multi-
ply factor, here we use the sum of overlapped detections’
scores as the current detection’s new score.

Detection merging: Apart from the Greedy∗ version of
Non Maximum Suppression [6], we also use the detection
combination introduced in [20]. It averages the locations of
overlapped detections rather than suppresses them.

Detection adjustment: As shown in Figure 4 (a), dif-
ferent databases have different annotation styles of ground-
truth. Specifically, AFLW has square annotations with nose
located approximately at the center. AFW uses tight rect-
angular bounding boxes as annotations with the eye-brow
being the approximate upper bound. FDDB uses elliptical
annotations bounding the whole head. As our detector is
trained on AFLW and tested on AFW and FDDB, there ex-
ist offsets in both detection position and scale. According to
observations, the offsets vary as face pose changes. There-
fore we adopt a view-specific detection adjustment to alle-
viate the offsets. Note that the adjustment is constant for all
images and faces in the same database, see Figure 4 (b) for

1A toy example: Det1: score: 10, nOverlap: 10; Det2: score: 9, nOver-
lap: 20; Det3: score: 5, nOverlap: 5. After score re-ranking: Det1: score:
10× 2

3
= 6.67; Det2: score: 9× 3

3
= 9; Det3: score: 5× 1

3
= 1.67.

Reranking AP (%) Merging AP (%)
None 91.7 Greedy* NMS 91.7
Normalization 93.5

Combination 93.4NewScore 92.9
OverlapRerank 95.0
SumofOverlap 93.7

Table 1. Comparison of different methods of score re-ranking and
detection merging.

details.
Summary: According to experimental results (Table 1),

OverlapRerank seems to be the best score re-ranking
method. The underlying reason may be that true positives
usually have many overlapped detections, while the false
positives would only get a few responses. Therefore lever-
aging this overlapping information in score re-ranking can
reduce many false positives. However, in practice, overlap
related methods and detection combination both cost much
time to process, which is infeasible in a large majority of
applications. We finally adopt Normalization score re-
ranking combined with Greedy∗ Non Maximum Suppres-
sion for the sake of detection speed.

5. Experiments
In this section, we compare our method with state-of-

the-art methods on AFW and FDDB databases which con-
tain challenging faces in the wild. In AFW, we com-
pare with three commercial systems (Google Picasa,
Face.com and Face++) and five academic methods
(Shen et al. [21], Zhu et al. [27], DPM [7], multiHOG [27]
and Kalal et al. [9]). In FDDB, we compare with one com-
mercial system (Olaworks) and six academic methods
(Yan et al. [23], Boosted Exemplar et al. [12], SURF multi-
view [13], PEP-Adapt [11], XZJY [21] and Zhu et al. [27])
listed on FDDB results page1.

5.1. Evaluation on benchmark face database

As shown in Figure 5, in AFW, our multi-scale detec-
tor achieves an ap value of 96.8%, outperforming other a-
cademic methods by a large margin. When it comes to
commercial systems, ours is better than Face.com and al-
most equal to Face++ and Google Picasa. Note that
most of our false positives on AFW database are faces that
haven’t been annotated (small, seriously occluded or artifi-
cial faces like mask and cartoon character).

When evaluated on FDDB database, we follow the eval-
uation protocol in [8] and report the average discrete and
continuous ROC of the ten subfolders. For equality, we
fix the number of false positives to 284 (equivalent to an
average of 1 False Positive Per Image) and compare the

1http://vis-www.cs.umass.edu/fddb/results.html

http://vis-www.cs.umass.edu/fddb/results.html


Figure 5. Experimental results on AFW and FDDB database. Best viewed in color.

true positive rate. In discrete score where evaluation met-
ric is the same as in AFW, our detector achieves 83.7%,
which is a little better than Yan et al. [23]. Note that the
ground-truth in FDDB are elliptical faces, therefore the e-
valuation metric of an overlap ratio bigger than 0.5 cannot
reveal the true performance of the proposed detector well.
When using continuous score which takes the overlap ra-
tio as the score, our method gets 61.9% true positive rate
at 1 FPPI for multi-scale version, surpassing other method-
s which output rectangular detections by a notable margin
(the Yan et al. detector outputs the same elliptical detection-
s as the ground-truth, therefore having advantages with this
metric). Our detector using single-scale features performs a
little worse with the benefit of faster detection speed.

5.2. Discussion

Training efficiency: We implement the method with Pi-
otr’s MATLAB toolbox [4] on a PC with Intel Core i7-3770
CPU and 16GB RAM. With 21, 328 positive images and
5, 771 negative images in total 6 views, the training pro-
cess takes about 5.3 mins for a single-scale subview de-
tector containing 2048 weak classifiers and 10.2 mins for
multi-scale version. Note that we use much fewer training
data than SURF multiview [13] whilst still outperforming
their performance.

Comparative results: When inspecting detections of
the proposed face detector and other algorithms on the test-
sets, some patterns can be found to explain why our detector
outperforms others. One evident strength lies in detecting
faces with extreme poses. Because we adopt multi-view
detection and train each subview detector separately, our
detector handles pose variations very well. Second is the
outstanding illumination invariance of our detector, which
is mainly owing to the extension of channel types to LUV
color space and gradient-related channels.

Detection speed: Due to the simple form of aggre-
gate channel features and fast computation of feature pyra-
mid [5], detection is quite efficient. For full yaw pose
face detection in VGA image, the proposed detector using

single-scale features runs at 20 FPS on a single thread and
62 FPS if 4 threads are used. If only frontal faces are con-
cerned, the detector runs at 34 FPS and 95 FPS after par-
allelization. When it comes to the proposed detector using
multi-scale features, the above four indices reduce to 15, 42,
21 and 55 FPS. Considering the large performance gain and
similar speed, the proposed method can replace Viola-Jones
detector for face detection in the wild.

6. Conclusion
A novel feature representation called aggregate channel

features possesses the merits of fast feature extraction and
powerful representation capacity. In this paper, we success-
fully apply the feature representation to face detection do-
main through a deep investigation into the feature design,
and propose a multi-scale version of feature which further
enriches the representation capacity. Combined with our
efforts into solving issues concerning multi-view detection,
the proposed multi-view face detector shows state-of-the-art
performance in both effectiveness and efficiency on faces in
the wild. The proposed method appeals to real world appli-
cation demands and has the potential to be embedded into
low power devices.
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