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Abstract—Learning based face descriptors have constantly
improved the face recognition performance. Compared to the
hand-crafted features, learning based features are considered
to be able to exploit information with better discriminative
ability for specific tasks. Motivated by the recent success of deep
learning, in this paper, we extend the original ‘shallow’ face
descriptors to ‘deep’ discriminant face features by introducing
a stacked image descriptor (SID). With deep structure, more
complex facial information can be extracted and the discriminant
and compactness of feature representation can be improved.
The SID is learned in a forward optimization way, which is
computational efficient compared to deep learning. Extensive
experiments on various face databases are conducted to show
that SID is able to achieve high face recognition performance
with compact face representation, compared with other state-of-
the-art descriptors.

Index Terms—Face recognition, stacked image descriptor, deep
discriminant face representation, learning based descriptor

I. INTRODUCTION

Face recognition has attracted much attention due to its
potential value for applications and its theoretical challenges.
In real world, the face images are usually affected by different
expressions, poses, occlusions and illuminations, so that the
difference of face images from the same person could be larger
than that from different ones. Therefore, how to extract robust
and discriminant features which make the intra-person faces
compact and enlarge the margin among different persons is a
critical and difficult problem in face recognition.

In the early period of face recognition, researchers try to
extract global feature transformation from the whole face
image. Subspace learning like principal component analysis
(PCA) [42], linear discriminant analysis (LDA) [2] etc. are
representative methods in this category. Because of the holistic
property, global feature transformation is usually not robust to
local appearance variations caused by expression, occlusion,
pose etc. The local face descriptors like Gabor [29], [21] and
local binary pattern (LBP) [1], then emerge. However, all these
descriptors are designed in a hand-crafted way, which may
not exploit the discriminative information from face images
sufficiently.

Recently, researchers propose to learn face descriptors from
face images in a data-driven way. Yang et al. [55] learn
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the optimal dictionary in sparse representation using Fisher
discrimination. [4], [13], [30], [31] propose to learn pattern
encoders of LBP like features. Cao et al. [4] adopt an
unsupervised method (random-projection and PCA tree) to
make the distribution of encoded LBP value uniform. Guo
et al. [13] propose a supervised learning method based on
Fisher separation criterion to learn a discriminative encoder
of LBP like feature. In [30], authors propose to construct a
decision tree for each region to encode the pixel comparison
result and in [31], a heuristic algorithm is used to find
the optimal pixel comparison pairs for discriminative face
representation. Lei et al. [22] propose a discriminant face
descriptor by learning discriminant image filters and optimal
sampling strategy to better discriminate face images. Zhang et
al. [62] propose multiple random faces guided sparse single-
hidden-layer neural networks to extract pose-invariant features
and meanwhile keep identity information.

Sparse representation classifier (SRC) is another important
branch for face representation and recognition. Since the first
successful application of SRC to face recognition [50], a lot of
variants of sparse representation have been proposed [49]. Gao
et al. [11] extends the sparse representation to kernel space and
propose kernel sparse representation to capture the nonlinear
similarity of features. Yang el al. [57] propose a robust sparse
coding method by seeking the maximum likelihood estimation
(MLE) solution of the sparse coding problem, which is more
robust to occlusions and corruptions. Yang et al. [56] further
apply SRC with a Gabor based occlusion dictionary to improve
the robustness to occlusion. Wagner et al. [47] apply sequential
l1-minimization to achieve pixel-accurate face alignment result
and adopt SRC for face recognition. Zhang et al. [59] propose
joint dynamic sparse representation to address the multi-view
face recognition problem by promoting shared joint sparsity
patterns among the multiple sparse representation vectors.
Mousavi et al. [32] introduce the spike-and-slab priors into
sparse representation and treat the multi-view face recognition
as a multi-task image classification problem. Xu et al. [53]
propose a two-phase sparse representation method to classify
the test samples to its class accurately. A novel sparse manifold
subspace learning method by incorporating locality sparse cod-
ing and sparse eigen-decomposition is recently proposed [35].
It avoids the parameter tuning of neighbors selection and
improves the robustness of the solution to data noise. More
face recognition methods using sparse representation can be
seen in [16], [15], [9], [27].

Most of the above face descriptors are learned in a ‘shallow’
way. Very recently, with the development of computational
resource and data collection, deep structure feature learning
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has achieved great success in object representation field. With
the help of deep structure, the capacity of model representation
is greatly improved and it is possible to learn complex (non-
linear) information from data effectively. Simonyan et al. [37]
show that deep Fisher networks by simply stacking Fisher
vectors improve the performance of standard Fisher vector rep-
resentation significantly. Chen et al. [8] propose marginalized
stacked denoising autoencoders (SDAs) to learn the optimal
solution in closed-form, thus the high computational cost is
reduced and the scalability to high-dimensional features is
improved. In the following, we mainly review the related work
in face recognition field. Sun et al. [38] propose a hybrid
convolutional network with restricted bolzmann machine for
face verification. The local relational visual features from face
pairs are learned and extracted by the deep network. Zhu et
al. [63] design a neural network consisting of face identity-
preserving feature layer and reconstruction layer to learn fea-
tures that reduce the intra variance and preserve the discrimina-
tive information between identities. Taigman et al. [41] from
Facebook propose a DeepFace model by learning a locally
connected nine-layer deep neural network without weighting
sharing from four million facial images. Sun et al. [40] learn
multiple convolutional networks (ConvNets) by distinguishing
more than 10,000 subjects. The learned ConvNets generalizes
well to face verification task. They improve the ConvNet by
incorporating face identification and verification tasks and the
face recognition performance is further enhanced [39]. Hu et
al. [17] propose deep metric learning using fully connect-
ed neural network, which outperforms the traditional metric
learning. Cai et al. [3] stack several independent subspace
analysis (ISA) with sparse constraint to build up deep network
to extract identity related representation.

Motivated by the success of deep learning, in this work,
we propose to stack the traditional shallow descriptor to deep
structure and propose a framework of stacked image descriptor
(SID) learning. The SID consists of image descriptor layer
and pooling layer alternatively. A sub-optimal forward learning
method is adopted to learn SID in a layer-wise way. For each
image descriptor layer, we try to minimize the specific loss
function to learn the best descriptor based on the output of
the last layer. We experimentally show that SID, which stacks
image descriptors, does improve the face discriminative ability
and achieve better face recognition performance compared to
the traditional shallow learning based descriptors.

The contribution of this paper mainly includes: 1) A stacked
image descriptor is proposed, which can be learned in a layer-
wise way with a close-form solution. The computational com-
plexity is lower than deep learning. It can be optimized without
using specific acceleration hardware like GPU. 2) The struc-
ture of proposed SID is compatible with convolutional neural
network (CNN) and the solution of SID can be considered as
a pre-training result for CNN. For descriptor learning at each
layer, the responses of different channels from previous layers
are concatenated, which provide sufficient and complementary
information to learn discriminant image descriptors. 3) Four
SID implementations (PCA-SID, LDA-SID, Tensor-SID and
DFD-SID) are presented. PCA-SID and LDA-SID involves
2nd order information, while Tensor-SID utilizes higher order

information to obtain the optimal solution. DFD-SID takes
into account not only the discriminative convolutional filters,
but also the optimal sampling strategy to extract effective face
representation.

The rest of the paper is organized as follows. We detail
the SID learning in Section II. Four image descriptor learning
methods are described. We discuss the time complexity of SID
learning and its relation to previous methods in Section III and
IV. In Section V, we examine the performance of SID on both
constrained and unconstrained face databases, compared with
state-of-the-art methods. In Section VI, we conclude the paper.

II. STACKED IMAGE DESCRIPTOR LEARNING
FRAMEWORK

Learning based image descriptors have demonstrated its
superiority over hand-crafted ones in previous work [55], [4],
[13], [30], [31], [22]. On the other hand, the advantage of deep
feature representation has been shown in many works [37],
[38], [41], [40], [39] recently. In this work, we incorporate the
image descriptor learning (IDL) and deep structure to propose
a stacked image descriptor learning method. Fig. 1 illustrates
the structure of SID used in this paper. The image descriptor
and max-pooling layers are concatenated alternatively. At each
image descriptor layer, the optimal descriptor is learned based
on the output of the last layer. Finally, the responses from the
last image descriptor layer and the max-pooling layer are con-
catenated and the linear discriminant analysis (LDA) is applied
to derive the compact discriminant feature representation, i.e.,
the representation of stacked image descriptor.

There have been several image descriptor learning methods
for face images. Chan et al. [5] apply PCA to learn optimal
image filters. Lei et al. [23] apply LDA to learn discrim-
inant image filters. Furthermore, they propose discriminant
face descriptor (DFD) to learn the discriminant and optimal
sampling strategy respectively. In the following, we describe
the image descriptor learning methods using PCA, LDA,
and DFD at a single layer, which are abbreviated as PCA-
IDL, LDA-IDL and DFD-IDL, respectively. Besides, we also
introduce discriminant tensor analysis (DTA) [54] based image
descriptor learning method, denoted as DTA-IDL.

A. PCA-IDL

In this part, we try to learn optimal image filters that extract
useful information for face recognition. The convolution of
the filter and the local image region consists of element-wise
multiplication and a summation operator. The pixels in a local
image region and the filter can be represented in vectors form,
denoted as x and w respectively. The convolution result, f , can
then be computed as f = wTx, where f is the convolution
result. The image descriptor learning aims to find optimal
filter w, so that after convolutional filtering, specific properties
of the responses are optimized. With PCA formulation, the
covariance of the responses is expected to be maximized so
that most energy of signals can be preserved and the irrelative
noise is removed. Denoting the pixel vector of patch at position
p from the i-th sample as xp

i and filter vector as w, the
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Fig. 1. Structure of stacked image descriptor for feature extraction.

convolution operation can be represented as fp
i = wTxp

i ,
where fp

i is the convolution response. The objective of PCA
based IDL is to find a filter w to maximize the covariance of
response fp, which can be formulated as

w = argmax
w

N∑
i=1

(fp
i − f̄p)(fp

i − f̄p)T

= argmax
w

N∑
i=1

wT (xp
i − x̄p)(xp

i − x̄p)Tw,

(1)

where f̄p and x̄p are mean vectors over all the samples at
position p; N is the number of total samples. If we share
the filter over the whole image, that is, the filter at different
position is the same, the objective of PCA-CFL can be re-
formulated as

w = argmax
w

P∑
p=1

N∑
i=1

wT (xp
i − x̄p)(xp

i − x̄p)Tw, (2)

where P is the number of positions. Denoting C =∑P
p=1

∑N
i=1(x

p
i − x̄p)(xp

i − x̄p)T , the optimal filter vector
w can be obtained by solving the eigen-value problem of C
corresponding to the leading eigenvalue.

B. LDA-IDL

PCA based filter learning does not consider class infor-
mation, thus the discriminant information is not sufficiently
exploited. We can intuitively use LDA instead of PCA to
exploit more discriminant information. With LDA formulation,
after image filtering, the response differences of filtered images
from the same class are expected to be minimized and the
response differences from different classes are maximized. Let
xp
ij be an image patch vector at position p of j-th image from

the i-th class, and the learned filter vector be w, the objective
of LDA based IDL can be formulated as

w = argmax
w

|Sb(w)|
|Sw(w)|

, (3)

where Sb(w) and Sw(w) are between-class and within-class
scatter matrices, defined as

Sw =
P∑

p=1

L∑
i=1

Ci∑
j=1

wT (xp
ij −mp

i )(x
p
ij −mp

i )
Tw

= wT (

P∑
p=1

L∑
i=1

Ci∑
j=1

(xp
ij −mp

i )(x
p
ij −mp

i )
T )w,

Sb =

P∑
p=1

L∑
i=1

Ciw
T (mp

i −mp)(mp
i −mp)Tw

= wT (

P∑
p=1

L∑
i=1

Ci(m
p
i −mp)(mp

i −mp)T )w,

(4)

where mp
i and mp are the mean vectors of patch vectors at po-

sition p over the samples in the i-th class and the whole sample
set, respectively. P is the number of position, L is the number
of class and Ci is the number of samples belonging to the i-th
class. Denoting Ŝb =

∑P
p=1

∑L
i=1 Ci(m

p
i −mp)(mp

i −mp)T

and Ŝw =
∑P

p=1

∑L
i=1

∑Ci

j=1(x
p
ij − mp

i )(x
p
ij − mp

i )
T , the

optimal filter w can be obtained by solving the generalized
eigen-value problem Ŝbw = λŜww corresponding to its
leading eigenvalues.

C. DTA-IDL

In LDA-IDL and PCA-IDL, pixels in the local region are
transformed into vector representation, where some structure
information may be lost. We introduce Discriminant Tensor
Analysis (DTA) [54] into convolutional filter learning to utilize
the high-order structure information. For the definitions and
operators with tensor representation, please refer to [44].
Considering a local convolution region as a K-order tensor
A ∈ Rm1×m2×···×mK , the purpose of DTA based convolution-
al filter learning is to find K projections w1, w2, · · · , wK so
that after mode-k products of tensor A and w1, w2, · · · , wK ,
the difference of the between class scatters and the within
class scatters is maximized. Mathematically, the objective of
DTA-IDL can be formulated as

(wk|Kk=1) = arg max
wk|Kk=1∑P

p=1

∑L
i=1

∑Ci

j=1 ||(Ā
p
i − Āp)×1 w1 · · · ×K wK ||2∑P

p=1

∑L
i=1

∑Ci

j=1 ||(A
p
ij − Āp

i )×1 w1 · · · ×K wK ||2
,

(5)

where ×k indicates the mode-k product of tensor and ma-
trix. Āp

i and Āp represent the mean tensor at position p
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over the samples in the i-th class and the whole sam-
ple set, respectively. As indicated in [54], one can adopt
an iterative procedure to solve this problem. In the itera-
tion of solving wk, we fix the other K − 1 projections
w1, . . . , wk−1, wk+1, wK and apply mode-k products of the
tensor Ap

ij with w1, . . . , wk−1, wk+1, wK to get the resulted
tensor Bp

ij . By mode-k flattening the tensor Bp
ij to Xp

ij , the
within and between class scatters can then be computed as

Sw =

P∑
p=1

L∑
i=1

Ci∑
j=1

(Xp
ij −Mp

i )(X
p
ij −Mp

i )
T

Sb =

P∑
p=1

L∑
i=1

Ci(M
p
i −Mp)(Mp

i −Mp)T ,

(6)

where Mp
i and Mp are the mean matrices of unfolded matrix

Xp
ij at position p over the samples in the i-th class and the w-

hole sample set, respectively. The solution wk that maximizes
the ratio of the between and within class scatters can then
be obtained by solving the generalized eigenvalue problem
Sbw = λSww. Algorithm 1 illustrates the optimization of
DTA-IDL.

Algorithm 1 DTA based Image Descriptor Learning
Input: A set of samples Ap

ij , i = 1, · · · , L, j = 1, · · · , Ci, p =
1, · · · , P}, where Ap

ij ∈ Rm1×m2×···×mK

Output: Image filter projections w1, w2, · · · , wK

1: Initialize: w1 = Im1 , w2 = Im2 , · · · , wK = ImK .
2: for t = 1, . . . , T do:
3: for k = 1, 2, · · · ,K do:
4: 1) Bp

ij = Ap
ij×1w1 · · ·×k−1wk−1×k+1wk+1 · · ·×K wK

5: 2) mode-k flatten the tensor Bp
ij to Xp

ij .
6: 3) Compute Sb, Sw using Eq.(6).
7: 4) Solve the generalized eigenvalue problem
8: Sbw = λSww
9: and obtain the eigenvectors w with largest eigenvalues.

10: 5) wk ← w.
11: end for
12: end for
13: Return: w1, w2, · · · , wK

D. DFD-IDL

Recently, Lei et al. [22] propose discriminant face descriptor
(DFD) by learning image filters and soft sampling matrix
from face images. This learning based face descriptor can
also be integrated into our framework. In DFD learning, we
need first to construct the pixel difference matrix (PDM) dI
by comparing the patch vectors in the neighborhood with
the central patch vector. At each layer of SID, the respons-
es in local region with multiple channels are transformed
into a patch vector x. Suppose the central and neighboring
patch vectors be xc and xn1 , xn2 , · · · , xnN

, where N is the
number of neighboring patches, the PDM is constructed as
dI = [xn1 −xc, xn2 −xc, · · · , xnN

−xc]. The details of PDM
construction can be found in [22]. The purpose of DFD is to
learn discriminant image filters w and optimal soft sampling
matrix v so that the differences of samples from different
classes and the same class are maximized. The objective of
DFD-IDL is formulated as

(w, v) = argmax
w,v∑P

p=1

∑L
i=1 Ciw

T (dmp
i − dmp)vvT (dmp

i − dmp)Tw∑P
p=1

∑L
i=1

∑Ci
j=1 w

T (dIpij − dmp
i )vv

T (dIpij − dmp
i )

Tw
,

(7)

where dmp
i and dmp are mean PDMs over the samples from

the i-th class and the whole sample set. As shown in [22]. The
solution to Eq.(7) can be obtained in an iterative way. First,
we fix v and obtain optimal w by solving the generalized
eigenvalue problem Ŝbw = λŜww with leading eigenvalues,
where

Ŝw =
P∑

p=1

L∑
i=1

Ci∑
j=1

(dIpij − dmp
i )vv

T (dIpij − dmp
i )

T

Ŝb =
P∑

p=1

L∑
i=1

Ci(dm
p
i − dmp)vvT (dmp

i − dmp)T .

(8)

Second, we fix w and obtain v by solving the generalized
eigenvalue problem S̃bw = λS̃ww with leading eigenvalues,
where

S̃w =

P∑
p=1

L∑
i=1

Ci∑
j=1

(dIpij − dmp
i )

TwwT (dIpij − dmp
i )

S̃b =

P∑
p=1

L∑
i=1

Ci(dm
p
i − dmp)TwwT (dmp

i − dmp).

(9)

The loop is continued until the stop condition is achieved.
The algorithm of DFD-IDL is illustrated in 2. As indicated in
[22], in practice, one loop optimization is enough to achieve
good result.

Algorithm 2 DFD based Image Descriptor Learning
Input: A set of PDMs dIpij , i = 1, · · · , L, j = 1, · · · , Ci, p =

1, · · · , P}, where dIpij ∈ Rd×N . d is the dimension of patch
vector and N is the number of neighboring patches.

Output: Image filter w and soft sampling matrix v
1: Initialize: w = I, v = I .
2: for t = 1, . . . , T do:
3: 1) Fixing v, compute Ŝb, Ŝw using Eq.(8).
4: 2) Solve the generalized eigenvalue problem
5: Ŝbw = λŜww
6: and obtain the eigenvectors w with largest eigenvalues.
7: 3) Fixing w, compute S̃b, S̃w using Eq.(9).
8: 4) Solve the generalized eigenvalue problem
9: S̃bv = λS̃wv

10: and obtain the eigenvectors v with largest eigenvalues.
11: end for
12: Return: w and v

E. Stacked Image Descriptor Learning

We stack multiple image descriptor layers mentioned above
and pooling layers alternatively to form stacked image de-
scriptor (SID). In each image descriptor layer, the image
descriptor is learned based on the output responses from the
last layer. Finally, we concatenate the responses from the last
two layers and apply LDA to derive a compact representation.
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Corresponding to PCA-IDL, LDA-IDL, DTA-IDL and DFD-
LDA at each single layer, their SIDs are denoted as PCA-SID,
LDA-SID, DTA-SID and DFD-SID, respectively. Furthermore,
in order to describe the face characteristic more finely, in each
image descriptor layer, we partition the face image into m×m
parts and learn the descriptors for each part independently.
In this way, we apply different image descriptors to different
face regions, so that the useful information can be sufficiently
exploited.

In our implementation, The facial partition parameter m is
set to 4, 4, 2 and 1 for four image descriptor layers. In each
pooling layer, max-pooling operator is applied on a 2 × 2
patch. The size of image filters at each image descriptor layer
is set to 8 × 8, 6 × 6, 3 × 3 and 3 × 3, respectively. For
DFD-SID, at each image descriptor layer, we use 8 neighbors
with radius 1 to learn the optimal soft sampling matrix. The
number of channels of learned filters at each image descriptor
layer is preserved to 20, 40, 50, 60. Finally, we obtain a 160-
dimensional face representation for each SID.

III. COMPUTATIONAL COMPLEXITY ANALYSIS

In this part, we take LDA-SID and ConvNet [40] as two
representative methods of SID and deep convolutional neutral
network (DCNN) to analyze the computational complexity.
For both methods, the most computational expensive operator
is the computation of layer-wise convolution for each image.
As described in [14], the complexity of convolution operator
is about O(

∑d
l=1 nl−1 · s2l nlm

2
l ), where l is the index of

convolutional layer, d is the number of convolutional layers, nl

is the number of learned filters at the l-th layer, and nl−1 is the
number of input channels of the l-th layer. sl and ml are the
spatial size of filter and output feature map. For DCNN, the
training time per image is roughly three times of the complex-
ity of convolution operator (one for forward convolution and
two for backward propagation) [14]. Since DCNN is optimized
in an iterative way, the computational complexity for DCNN
is about 3O(TN

∑d
l=1 nl−1 ·s2l nlm

2
l ), where T is the number

of iterations and N is number of training samples. For LDA-
SID, besides the convolution operator, the other computational
expensive operators are the computation of between and with-
in class scatters and the eigenvalue decomposition operator,
whose time complexities are about O(N

∑d
l=1 nl−1s

2
lm

2
l )

and O(
∑d

l=1(nl−1s
2
l )

3), respectively. Therefore, the time
complexity of SID is about O(N

∑d
l=1 nl−1 · s2l nlm

2
l ) +

O(N
∑d

l=1 nl−1s
2
lm

2
l ) +O(

∑d
l=1(nl−1s

2
l )

3)). The complex-
ity of class scatter computation is lower than that of convo-
lution operator. The complexity of eigenvalue decomposition
is relatively low because it is irrelative to number of training
samples N and the value of sl is usually small. Therefore, one
can see that the computational efficiency of SID compared
to traditional DCNN is mainly from two aspects. One is
that optimal solution to SID is finally obtained by solving
a eigenvalue decomposition problem, which is irrelative to the
number of training samples, thus it is efficient for large-scale
image training. The other is that the SID is of close-form
solution, which avoids the iterative optimization. Table I lists
the empirical training time of PCA-SID, LDA-SID, compared

to PCANets on a training set of about 160,000 face images
from 4,000 subjects. It is reported by using an unoptimized
matlab implementation on a PC server with Intel Xeon CPU
E5-2670 @2.60GHZ with 128GB memory. The time costs
include the convolutional filter learning in each layer and the
image convolution operator to generate responses which are
the input of convolutional filter learning at the next layer. It
is shown that SID learning from 160,000 face images takes
about 9 hours, which is comparable to DCNN using GPU
implementation.

TABLE I
EMPIRICAL TRAINING TIMES OF PCA-SID, LDA-SID AND PCANETS.

Methods Training time (h)
PCANet [5] 8.84

PCA-SID 9.15
LDA-SID 9.40

IV. RELATION TO PREVIOUS METHODS

The SID is an extension of previous shallow IDL methods.
For example, DFD-SID can be considered as an extension to
DFD [22] by stacking the original DFD layer by layer, so that
the representation ability is improved. Moreover, the structure
of SID is similar to DCNN. One can also use stochastic
gradient descent method to fine-tune the optimal solution of
SID.

One recent work, namely PCANet [5], is composed of
two layers of convolutional filters learned by PCA, followed
by binary encoding and high-dimensional histogram feature
extraction (about 204,800 dimensions). The first layer learning
of PCANet and PCA-SID is the same; however, the remaining
procedures are totally different. First, at the second or deeper
layer of PCANet, the responses from different PCA filters
(channels) are treated as different samples and a common
PCA filter is learned for different channels. In SID, the re-
sponses from different channels are concatenated into a novel
feature vector and different projective weights are learned
for responses from different channels. More discriminant and
complementary information can be extracted in this way.
Second, the structure of PCANet is similar to traditional local
descriptors like LBP [1], LQP [43], bag of words model [21]
etc. After image encoding, the histogram features extracted
from local overlapping or non-overlapping regions are concate-
nated to represent faces. Comparatively, SID is motivated from
convolutional neural network (CNN), which consists of con-
volutional layer, pooling layer and fully connected layer. The
extracted features are usually low-dimensional embeddings
of convolutional responses. Third, besides using PCA or L-
DA, which involves second-order information for discriminant
learning, we also propose DTA-SID, which incorporates high-
order information and propose DFD-SID, which learns the
discriminant convolutional filter and optimal sampling strategy
with deep structure. From the work [5], one can see that
following the structure of PCANet, the supervised method like
LDANet fails to achieve better recognition performance than
PCANet. In contrast, LDA-SID successfully performs better
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than PCA-SID, which is reasonable because the supervised
information is usually helpful for classification. It indicates
that SID is able to extract discriminant information for face
recognition.

V. EXPERIMENTS

There are two learning parts involved in SID for face
recognition. One is the SID learning for face representa-
tion and the other is the metric/classifier learning for face
recognition. Specifically, we collect a face database from
internet, namely webface database (Fig. 2) as a training set
to learn the stacked image descriptor. The webface database
consists of more than 160,000 face images from about 4,000
subjects. There is no intersection between LFW and webface
databases in terms of subjects. In classification phase of all
the following experiments, unless explicit explanation, we
adopt joint bayesian [6] to learn the discriminative metric on
different databases, respectively. We examine the performance
of SID on LFW and YTF face databases, which are considered
as challenging unconstrained cases including many variations
like pose, expression, occlusion simultaneously. We also e-
valuate the performance of different descriptors on traditional
large face databases like FERET, Multi-PIE to examine the
generalization of SID regarding to expression, lighting, aging
and pose variations, respectively. In all the experiments, for
SID related results, the face images are detected and aligned
automatically [52] and there is no further pre-processing
method adopted.

Fig. 2. Face examples from webface database.

A. LFW

We first examine the performance of proposed method
on LFW face database [19]. There are 13, 233 images from
5, 749 different persons, with large pose, occlusion, expression
variations from the internet. Fig. 3 shows some face examples
from LFW face database.

For SID learning, we empirically crop 11 face patches with
different scales (shown in Fig. 4, the size of the first two
patches is 110 × 94 and the size of the left 9 patches is
94 × 94) according to the detected face landmarks. We learn
SID on each face patch, respectively, each of which outputs
a 160-dimensional feature. In feature extraction phase, for
each face patch, both the original and its mirror are adopted.

Fig. 3. Face examples from LFW database.

Therefore, the extracted feature representation for each face
patch is of 320 dimension. In face classification, we follow
the unrestricted protocol of LFW. The database of LFW is
randomly divided into 10 splits. In each iteration, nine of
ten face subsets are used to learn the classification metric
(joint bayesian method adopted in this work) and the left one
is used to test the classification performance. The final face
recognition performance is reported as the mean accuracy of
these 10 experiments.

Fig. 4. Examples of 11 face patches cropped from a face image.

1) Comparison among different SIDs: We compare the
performance of Random-SID, PCA-SID, LDA-SID, DTA-SID
and DFD-SID on the 2nd face patch, which is indicated using
superscript 2nd in Table II. For Random-SID, the values of
image filters are uniformly sampled from [0, 1]. From the
results shown in Table II, one can see that the supervised based
SIDs achieves significantly higher face recognition accuracy
than unsupervised one. It indicates that it is effective to extract
discriminant information by strongly supervised learning in a
layer-wise way. The performance of three proposed supervised
learning based SIDs is similar. In the following, we report the
performance of LDA-SID and DFD-SID as two representative
ones of SIDs.

TABLE II
MEAN ACCURACY (%) OF DIFFERENT SIDS ON LFW DATABASE WITH

320-DIMENSIONAL FEATURE.

Methods Accuracy

Rand-SID2nd 66.05±0.40
PCA-SID2nd 71.37±0.34
LDA-SID2nd 91.88±0.58
DTA-SID2nd 91.78±0.42
DFD-SID2nd 90.75±0.50

To show the advantage of deep structure of SID, we evaluate
performance of the shallow version of LDA-SID where only
one image descriptor layer is adopted. The shallow version
of LDA-SID on 2nd face patch achieves the accuracy of
0.8097 versus the accuracy of 0.9188 by deep LDA-SID,
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validating that the deep structure is useful to exploit more
discriminant information helpful to face recognition. We also
implement PCANet [5] on the same training set. Its accuracy
on LFW database is 0.6700, lower than PCA-SID and LDA-
SID, indicating that the proposed SID has the advantage over
PCANet to extract discriminant face representation for face
recognition.

2) Comparison among different face patches: We train 11
SIDs on 11 face patches, respectively. For each face patch, the
face image and its mirror are used to extract features, which
is of 320 dimension. We also examine the performance by
concatenating these features from 11 patches. In classification,
the joint bayesian is applied to the SID feature to learn a
discriminant metric following unrestricted protocol. Fig. 5
illustrates the face recognition accuracy of each patch and
their combination. One can see that the first two face patches
achieves the highest face recognition accuracy than other
patches. There is complementary information in different face
patches and by combining the 11 face patches, it achieves
the face recognition accuracy as high as 95.65% and 94.43%
for LDA-SID and DFD-SID, respectively. In the following,
without explicit explanation, we report the performance of SID
by combining the 11 face patches.
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Fig. 5. Recognition accuracy of different cropped patches on LFW database.

3) Comparison with state-of-the-art methods:

a) Results following unrestricted protocol: Table III
compares the performance of LDA-SID and DFD-SID with
state-of-the-art descriptors including deep learning methods.
We partially present representative results from the web-
site1. All the results are conducted following unrestricted
protocol. The proposed method significantly outperforms the
conventional hand-crafted (e.g., LBP) or shallow learned face
descriptors (e.g., DFD, Fisher vector faces), validating the
advantage of deep structure for face representation learning.
LDA-SID and DFD-SID achieve close performance to high-
dim LBP 2, whose over-complete feature dimension is larger
than 100K. Comparatively, the proposed SID feature is only of
3520 dimensions, which is much more compact than high-dim
LBP and the storage and computational efficiency in feature
matching are improved. Compared with deep learning related
methods, SID methods achieve better recognition accuracy
than ConvNet-RBM, indicating the effectiveness of SID. The
performance of SID is worse than DeepFace (with 4096 × 4
DeepFace feature) and DeepID2 (with 4000 DeepID2 feature),
which are also using deep structure and fine-tuned on large
scale face database. It indicates that there is improvement
space for SID in terms of accuracy and optimization. It is
worth noting that one can use SID as a good initialization and
use optimization method adopted in deep learning to improve
the result further.

TABLE III
MEAN ACCURACY (%) OF DIFFERENT METHODS ON LFW DATABASE.

Methods Accuracy
LBP+PLDA [34] 87.33±0.55

DFD [22] 84.02±0.44
Fisher vector faces [36] 93.03±1.05

high-dim LBP [7] 93.18±1.07
PCANet [5] 86.28±1.14

DeepFace [41] 97.35±0.25
ConvNet-RBM [38] 92.52±0.38

DeepID2 [39] 99.15±0.13
LDA-SID 95.65±0.44
DFD-SID 94.43±0.47

b) Results following BLUFR: To evaluate the perfor-
mance of SID more completely, we also adopted the bench-
mark of large-scale unconstrained face recognition (BLUFR)
proposed by Liao et al. [28] recently. It is indicated that the
original protocol of LFW may be of a bias from many real
applications of face recognition, where a low false accept rate
(FAR) is usually desired. Thereby, a novel face recognition
evaluation protocol, namely BLUFR is proposed, focusing on
the verification rate and open-set identification rate at low
FARs. In BLUFR, 10 trials of training and testing sets are
randomly selected from original LFW dataset. The training
set of each trial includes 3, 524 face images on average from
1, 500 subjects. The test set of each trial contains the remaining
4, 249 subjects with 9, 708 face images on average. Two face
recognition performance measures, i.e., face verification and

1http://vis-www.cs.umass.edu/lfw/results.html
2To compare the representative ability of SID and high-dim LBP fairly,

we report the performance without external training data in metric learning
phase.
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open-set identification are adopted. In face verification test,
all the image pairs from the test set are compared and the
computed matching scores are used for evaluation. There
are about 156, 915 genuine matching scores and 46, 960, 863
imposter matching scores in each trial on average. The open-
set identification rate is defined as rank-1 recognition rate
whose similarity score is above the threshold. In open-set
identification test, in each trial, the test set is further randomly
divided into three subsets, the gallery set, the genuine probe set
PG and the imposter probe set PN . We first randomly select
1, 000 subjects from the test set, one image from which is used
to form the gallery set and the left forms the genuine probe
set. The other images from the test set form the imposter probe
set. Table IV lists the constitution of face images in BLUFR
evaluation.

After SID extraction, we train the joint bayesian model
on training set and evaluate the performance on testing set.
The verification rate and open-set identification rate with
different FARs are reported. The lower bound (mean− std.)
of performance over 10 trills is illustrated in Tables V and VI,
compared with state-of-the-art descriptors.

From the results, one can see that both LDA-SID and DFD-
SID outperform traditional descriptor LBP and learning based
descriptor LE. At the threshold of FAR=1%, LDA-SID im-
proves the verification rate and open-set identification rate of
LE by 31.2% and 7.8%, respectively, indicating the superiority
of deep structure feature than the shallow one. LDA-SID
(of 3250 dimension) outperforms the recently proposed high-
dim LBP (of more than 100K dimensions) with much lower
dimensionality of feature representation, indicating that SID is
able to learn effective and compact feature representation for
face recognition.

TABLE V
VERIFICATION RATE FOLLOWING BLUFR PROTOCOL. THE RESULTS ARE

REPORTED AS THE MEAN ACCURACY (%) SUBTRACTED BY THE
CORRESPONDING STANDARD DEVIATION OVER 10 TRIALS.

Method FAR=0.1% FAR=1%
LBP [28] 14.18 31.39
LE [28] 23.31 46.60

high-dim LBP [28] 41.66 65.84
LDA-SID 48.99 77.84
DFD-SID 40.70 70.18

TABLE VI
OPEN-SET IDENTIFICATION RATE AT RANK-1 FOLLOWING BLUFR

PROTOCOL. THE RESULTS ARE REPORTED AS THE MEAN ACCURACY (%)
SUBTRACTED BY THE CORRESPONDING STANDARD DEVIATION OVER 10

TRIALS.

Method FAR=1% FAR=10%
LBP [28] 8.82 16.61
LE [28] 11.26 20.73

high-dim LBP [28] 18.07 32.63
LDA-SID 19.13 39.22
DFD-SID 15.28 31.70

B. Youtube Face Database

Youtube face (YTF) database [48] is a video version of
LFW. The subjects in YTF is a subset of LFW. There are

3425 videos of 1595 subjects. For each video, we randomly
select 10 frames to represent it. In testing phase, given two
videos, we generate 100 scores between the two sets of 10
frames and the final score is obtained by computing the mean
value of 100 scores. In each fold of evaluation, we apply the
joint bayesian to 9 of 10 splits and evaluate the performance
on the left split. The mean face recognition accuracy of 10
folds is reported (Table VII). The proposed stacked image
descriptor outperforms most existing methods including the
recent proposed discriminant deep metric learning (DDML).
We can see that even with the direct cosine metric without
learning, the extract SID based feature achieves comparable
recognition accuracy with other methods, validating that SID
is able to exploit strong discriminative features. With joint
bayesian metric, the performance of SID is much improved,
and close to DeepFace, indicating effectiveness of stacking
local image descriptors.

TABLE VII
MEAN ACCURACY (%) OF DIFFERENT METHODS ON YTF DATABASE.

Methods Accuracy
LBP+MBGS [48] 76.4±1.8
VSOF+OSS [45] 79.7±1.8
DeepFace [41] 91.4±1.1

APEM (fusion) [25] 79.1±1.5
DDML [17] 82.3±1.5

LDA-SID+cosine 82.7±0.7
DFD-SID+cosine 81.0±0.8

LDA-SID+JB 87.8±0.4
DFD-SID+JB 89.1±0.4

C. FERET

The webface, LFW, YTF images are collected from the
internet, where the variations of expression, pose, occlusion
etc. are not constrained. We further evaluate SID on traditional
large face databases in which the face variation is controlled
to some extent. That is, following different testing protocols, it
usually contains one or two variations from expression, pose,
lighting, aging etc. so that the robustness of SID to these vari-
ations can be well evaluated separately. By applying the SID
feature learned from the webface to traditional face databases
directly, we can effectively examine the generalization ability
of SID, compared with the state-of-the-art performance on
these face databases. Two face databases, FERET [33], and
Multi-PIE [12] are adopted.

The FERET database consists of a training set, a gallery set
and four probe sets. The training set contains 1002 images.
In testing phase, there are one gallery set with 1196 images
from 1196 subjects. Four probe sets (fb, fc, dup1 and dup2)
includes expression, illumination and aging variations. Fig. 6
show face examples from FERET face database.

Fig. 6. Face examples from FERET face database.
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TABLE IV
OVERVIEW OF TRAINING AND TESTING SETS FOLLOWING BLUFR PROTOCOL.

Image set No. Classes No. Images No. Genuine matches No. Imposter matches
Train 1,500 3,524 85,341 6,122,185

Test

All 4,294 9,708 156,915 46,960,863
Gallery 1,000 1,000 - -

Genuine probe 3,249 4,357 - -

We compare the proposed SID methods with traditional
hand-crafted descriptors and learning based descriptors. Ta-
ble VIII lists the rank-1 recognition performance of different
methods. Note that except the SID methods, all the other
methods use the aligned face images with manually labeled
coordinates. The method without ‘PrePro’ means there is no
illumination pre-processing. From the results, one can see that
without illumination pre-processing, most of the descriptors
achieve satisfactory in expression subset, while their perfor-
mance in lighting and aging is usually much worse. With
proper pre-processing, the performance on lighting and aging
subset is much improved. It is worth noting that WPCA is
applied to gallery set, which does not very strictly follow the
FERET protocols because the gallery information in testing
set is used. The learning based methods usually achieve higher
face recognition performance than hand-crafted ones, validat-
ing the superiority of learning based descriptors. Although the
proposed SID is learned from the webface database, which
differs from the FERET database, the performance of SID is
competitive with other methods in most cases, even without
illumination preprocessing, indicating that the generalization
of SID is promising. Meanwhile, the performance of learned
SID on lighting variation is not as good as state-of-the-
art methods. This may be due to the fact that the lighting
patterns are not sufficiently learned from the webface database.
Overall speaking, the learned SID from webface database has
good performance on expression and aging variations, but the
performance on lighting variation still needs to be improved.

TABLE VIII
COMPARISON RESULTS (RANK-1 RECOGNITION RATE (%)) OF PROPOSED

METHOD WITH STATE-OF-THE-ART METHODS ON FERET DATABASE.

Methods fb fc dup I dup II
LBP [1] 97.0 79.0 66.0 64.0

LGBP [61] 98.0 97.0 74.0 71.0
HGPP [58] 98.0 99.0 78.0 76.0
LGXP [51] 99.0 100.0 92.0 91.0
POEM [46] 97.6 95.0 77.6 76.2

DT-LBP [30] 99.0 63.0 67.0 48.0
DLBP [31] 99.0 48.0 68.0 55.0
G-LQP [43] 99.5 99.5 81.2 79.9

DT-LBP+PrePro [30] 99.0 100.0 84.0 80.0
DLBP+PrePro [31] 99.0 99.0 86.0 85.0
DFD+PrePro [22] 99.2 98.5 85.0 82.9
DCP+PrePro [10] 98.2 100.0 86.3 86.8

G-LQP+WPCA [43] 99.9 100.0 93.2 91.0
DFD+PrePro+WPCA [22] 99.4 100.0 91.8 92.3

POEM+PrePro+WPCA [46] 99.6 99.5 88.8 85.0
LDA-SID 98.5 98.5 92.4 94.9
DFD-SID 97.8 93.8 87.5 89.7

D. Multi-PIE

Multi-PIE face database contains 754, 204 images from 337
subjects with 15 poses and 20 illuminations, captured in four
sessions during different periods. In this part, we first follow
the protocols adopted in [60] to compare the performance of
SID with sparse representation. All the 249 subjects in session
1 are used. The 14 fontal images with 14 illuminations and
neutral expression per subject are used to form the training
set. In testing phase, 10 frontal images with illumination id
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18} with neutral expression from
session 2 to session 4 per subject are used. For SID, we adopt
joint bayesian to learn the discriminant metric on training set.
Table IX lists the recognition performance comparison of SID,
compared with sparse representation classifier (SRC) and col-
laborative representation based classification with regularized
least square (CRC-RLS). The results of SRC and CRC-RLS
are copied from the paper [60] directly. It is shown that the
proposed LDA-SID and DFD-SID outperform SRC and CRC-
RLS in all the tests, demonstrating the effectiveness of SID
representation.

TABLE IX
RECOGNITION RATE (%) OF SID COMPARED WITH SPARSE

REPRESENTATION ON MULTIPIE DATABASE.

SRC CRC-RLS LDA-SID DFD-SID
Session 2 93.9 94.1 93.9 96.8
Session 3 90.0 89.3 96.4 95.8
Session 4 94.0 93.3 96.5 96.2

We further examine the performance of SID following the
protocol adopted in [26], [63]. In protocol I (corresponding
to Setting I in [63]), we evaluate the robustness of SID to
pose variation. The images with illumination 07 from four
sessions are adopted. In training phase, we use all the images
from the first 200 subjects. In testing phase, one frontal image
of each subject is selected to form the gallery set and the
remaining images are used to form the probe set with different
poses. There are in total 137 images in gallery set and 137
images in each probe set corresponding to different poses. We
also adopted protocol II (corresponding to Setting III in [63])
to evaluate the robustness of SID to pose and illumination
variations simultaneously. The images from the session one
with 7 poses and 20 illuminations are used. In training phase,
we use all images from the first 100 subjects. In testing phase,
one frontal image with illumination 07 of each subject is
selected as the gallery set and the left images with 6 poses and
19 illuminations are used as the probe set. Fig. 7 illustrates
an example of face with 7 poses. For SID, the networks
learned from webface database are adopted directly to extract
face features and the joint bayesian is applied to train the
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classification model on Multi-PIE training set.

Fig. 7. Face example with different poses from Multi-PIE database.

Table X lists the face recognition performance across poses.
In this part, we compare SID with state-of-the-art methods
which do not utilize the prior pose information of probe
images. It is shown that SID achieves competitive face recogni-
tion performance across poses. It significantly outperforms the
traditional descriptor like LGBP and achieves higher accuracy
than the conventional learning based methods like LE and
CRBM. It achieves better performance than FA-EGFC, which
utilizes 3D model to extract pose-invariant feature. SID based
methods extract pose robust face features without synthesizing
frontal face image explicitly. Its performance is competitive to
the recently proposed deep learning based methods (FIP [63]
and SPAE [20]), which is learned from the Multi-PIE face
database, validating the robustness of SID to pose variation
and the good generalization across face databases. The deep
learning based method (RL [63]) with explicit frontal face
synthesis achieve the highest face recognition in the case of
large pose variation.

TABLE X
RECOGNITION RATES (%) OF PROPOSED METHOD WITH

STATE-OF-THE-ART METHODS ON MULTI-PIE DATABASE ACROSS
DIFFERENT POSES.

Methods -45◦ -30◦ -15◦ 15◦ 30◦ 45◦ Avg
LGBP [61] 37.7 62.5 77.0 83.0 59.2 36.1 59.3

FA-EGFC [26] 84.7 95.0 99.3 99.0 92.9 85.2 92.7
CRBM [18]+LDA 80.3 90.5 94.9 96.4 88.3 75.2 87.6

FIP+LDA [63] 93.4 95.6 100.0 98.5 96.4 89.8 95.6
RL+LDA [63] 95.6 98.5 100.0 99.3 98.5 97.8 98.3

SPAE [20] 84.9 92.6 96.3 95.7 94.3 84.4 91.4
LDA-SID 92.3 96.0 98.0 96.7 94.7 91.0 94.8
DFD-SID 91.3 95.3 97.7 96.3 94.3 90.0 94.2

Table XI illustrates the face recognition performance across
pose and illumination. In this case, the proposed SID methods
significantly improve the performance of previous methods.
It even enhances the recently proposed deep learning based
method [63] by about 19%. On one hand, it validates that SID
learned from webface database does have good generalization
and robustness across different face databases and scenarios.
On the other hand, it indicates that the deep networks trained
with limited data in [63] does not exploit the discriminant
and robust face representation sufficiently when pose and
illumination variations are present simultaneously.

VI. CONCLUSIONS

This paper proposes a stacked image descriptor (SID). The
SID is optimized in a forward layer-wise way. In each image
descriptor layer, based on the output of the previous layer,
traditional shallow image descriptor learning method is applied

TABLE XI
RECOGNITION RATES (%) OF PROPOSED METHOD WITH

STATE-OF-THE-ART METHODS ON MULTI-PIE DATABASE WITH POSE AND
ILLUMINATION VARIATIONS.

Recognition Rates on Different Poses
Methods -45◦ -30◦ -15◦ 15◦ 30◦ 45◦ Avg
Li [24] 63.5 69.3 79.7 75.6 71.6 54.6 69.3

RL+LDA [63] 67.1 74.6 86.1 83.3 75.3 61.8 74.7
LDA-SID 86.0 95.5 98.8 98.5 95.7 87.2 93.6
DFD-SID 83.8 93.3 97.7 96.8 94.0 83.7 91.6

Recognition Rates on Different Illuminations
Methods 00 01 02 03 04 05 06
Li [24] 51.5 49.2 55.7 62.7 79.5 88.3 97.5

RL+LDA [63] 72.8 75.8 75.8 75.7 75.7 75.7 75.7
LDA-SID 83.5 83.0 91.5 92.8 96.3 97.3 98.3
DFD-SID 81.5 78.9 85.1 91.6 95.8 96.4 96.7

08 09 10 11 12 13 14
Li [24] 97.7 91.0 79.0 64.8 54.3 47.7 67.3

RL+LDA [63] 75.7 75.7 75.7 75.7 75.7 75.7 73.4
LDA-SID 98.6 98.1 96.8 95.2 90.8 85.1 97.2
DFD-SID 97.7 97.5 96.2 92.5 87.1 80.2 95.0

15 16 17 18 19 Avg
Li [24] 67.7 75.5 69.5 67.3 50.8 69.3

RL+LDA [63] 73.4 73.4 73.4 72.9 72.9 74.7
LDA-SID 97.7 98.3 97.5 97.3 83.6 93.6
DFD-SID 96.6 96.6 96.3 95.2 82.3 91.6

to derive the optimal image descriptor. By concatenating image
descriptor layer and max-pooling layer, we straightforwardly
obtain the stacked image descriptor. Four SID implementations
(PCA-SID, LDA-SID, DTA-SID and DFD-SID) are intro-
duced. By applying SID to face recognition, we find that this
strongly supervised optimization method at each layer is able
to extract discriminant and compact face representation, which
achieves good face recognition accuracy in the wild and also
has good generalization performance on traditional frontal face
recognition. Compared to deep learning, the time complexity
of SID is lower when applied to large scale training data. The
SID is a good choice to learn discriminative representation
from large scale data, especially when GPU device is not
available.
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