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Abstract

Recently, deep learning based facial landmark detec-
tion has achieved great success. Despite this, we notice
that the semantic ambiguity greatly degrades the detection
performance. Specifically, the semantic ambiguity means
that some landmarks (e.g. those evenly distributed along
the face contour) do not have clear and accurate definition,
causing inconsistent annotations by annotators. According-
ly, these inconsistent annotations, which are usually provid-
ed by public databases, commonly work as the ground-truth
to supervise network training, leading to the degraded ac-
curacy. To our knowledge, little research has investigated
this problem. In this paper, we propose a novel probabilis-
tic model which introduces a latent variable, i.e. the ‘real’
ground-truth which is semantically consistent, to optimize.
This framework couples two parts (1) training landmark
detection CNN and (2) searching the ‘real’ ground-truth.
These two parts are alternatively optimized: the searched
‘real’ ground-truth supervises the CNN training; and the
trained CNN assists the searching of ‘real’ ground-truth.
In addition, to recover the unconfidently predicted land-
marks due to occlusion and low quality, we propose a glob-
al heatmap correction unit (GHCU) to correct outliers by
considering the global face shape as a constraint. Exten-
sive experiments on both image-based (300W and AFLW)
and video-based (300-VW) databases demonstrate that our
method effectively improves the landmark detection accura-
cy and achieves the state of the art performance.

1. Introduction
Deep learning methods [25, 33, 36, 15, 7, 28, 10, 9] have

achieved great success on landmark detection and other face
analysis tasks due to the strong modeling capacity. Despite
this success, precise and credible landmark detection stil-
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Figure 1. The landmark updates in training after the model is
roughly converged. Due to ‘semantic ambiguity’, we can see that
many optimization directions, which are random guided by ran-
dom annotation noises along with the contour and ‘non semantic’.
The others move to the semantically accurate positions. Red and
green dots denote the predicted and annotation landmarks, respec-
tively.

l has many challenges, one of which is the degraded per-
formance caused by ‘semantic ambiguity’. This ambigui-
ty results from the lack of clear definition on those weak
semantic landmarks on the contours (e.g. those on face
contour and nose bridge). In comparison, strong seman-
tic landmarks on the corners (e.g. eye corner) suffer less
from such ambiguity. The ‘semantic ambiguity’ can make
human annotators confused about the positions of weak se-
mantic points, and it is inevitable for annotators to introduce
random noises during annotating. The inconsistent and im-
precise annotations can mislead CNN training and cause
degraded performance. Specifically, when the deep mod-
el roughly converges to the ground-truth provided by public
databases, the network training is misguided by random an-
notation noises caused by ‘semantic ambiguity’, shown in
Fig. 1. Clearly these noises can make the network training
trapped into local minima, leading to degraded results.

In this paper, we propose a novel Semantic Alignment
method which reduces the ‘semantic ambiguity’ intrinsical-



ly. We assume that there exist ‘real’ ground-truths which
are semantically consistent and more accurate than human
annotations provided by databases. We model the ‘real’
ground-truth as a latent variable to optimize, and the opti-
mized ‘real’ ground-truth then supervises the landmark de-
tection network training. Accordingly, we propose a prob-
abilistic model which can simultaneously search the ‘real’
ground-truth and train the landmark detection network in
an end-to-end way. In this probabilistic model, the prior
model is to constrain the latent variable to be close to the
observations of the ‘real’ ground truth, one of which is the
human annotation. The likelihood model is to reduce the
Pearson Chi-square distance between the expected and the
predicted distributions of ‘real’ ground-truth. The heatmap
generated by the hourglass architecture [19] represents the
confidence of each pixel and this confidence distribution is
used to model the predicted distribution of likelihood. A-
part from the proposed probabilistic framework, we further
propose a global heatmap correction unit (GHCU) which
maintains the global face shape constraint and recovers the
unconfidently predicted landmarks caused by challenging
factors such as occlusions and low resolution of images. We
conduct experiments on 300W [23], AFLW [11] and 300-
VW [24, 26, 3] databases and achieve the state of the art
performance.

2. Related work
In recent years, convolutional neural networks (CNN)

achieves very impressive results on face alignment task.
Sun et al [25] proposes to cascade several DCNN to pre-
dict the shape stage by stage. Zhang et al [32] proposes a
single CNN and jointly optimizes facial landmark detection
together with facial attribute recognition, further enhancing
the speed and performance. The methods above use shallow
CNN models to directly regress facial landmarks, which are
difficult to cope the complex task with dense landmarks and
large pose variations.

To further improve the performance, many popular se-
mantic segmentation and human pose estimation frame-
works are used for face alignment [31, 5, 2, 16]. For each
landmark, they predict a heatmap which contains the prob-
ability of the corresponding landmark. Yang et al. [31]
uses a two parts network, i.e., a supervised transformation
to normalize faces and a stacked hourglass network [19] to
get prediction heatmaps. Most recently, JMFA [5] and FAN
[2] also achieve the state of the art accuracy by leveraging
stacked hourglass network. However, these methods do not
consider the ‘semantic ambiguity’ problem which potential-
ly degrades the detection performance.

Two recent works, LAB [28] and SBR [6], are related
to this ‘semantic ambiguity’ problem. By introducing more
information than pixel intensity only, they implicitly alle-
viate the impact of the annotation noises and improve the

performance. LAB [28] trains a facial boundary heatmap
estimator and incorporates it into the main landmark regres-
sion network. LAB uses the well-defined facial boundaries
which provide the facial geometric structure to reduce the
ambiguities, leading to improved performance. However,
LAB is computational expensive. SBR [6] proposes a reg-
istration loss which uses the coherency of optical flow from
adjacent frames as its supervision. The additional informa-
tion from local feature can mitigate the impact of random
noises. However, the optical flow is not always credible in
unconstrained environment and SBR trains their model on
the testing video before the test, limiting its applications.
To summarize, LAB and SBR do not intrinsically address
the problem of ‘semantic ambiguity’ because the degraded
accuracy is actually derived from the inaccurate labels (hu-
man annotations provided by databases). In this work, we
solve the ‘semantic ambiguity’ problem in a more intrinsic
way. Specifically, we propose a probabilistic model which
can simultaneously search the ‘real’ ground-truth without
semantic ambiguity and train a hourglass landmark detector
without using additional information.

3. Semantic ambiguity
The semantic ambiguity indicates that some landmarks

do not have clear and accurate definition. In this work, we
find the semantic ambiguity can happen on any facial points,
but mainly on those weak semantic facial points. For ex-
ample, the landmarks are defined to evenly distribute along
the face contour without any clear definition of the exact
positions. This ambiguity can potentially affect: (1) the ac-
curacy of the annotations and (2) the convergence of deep
model training. For (1), when annotating a database, anno-
tators can introduce random errors to generate inconsistent
ground-truths on those weak semantic points due to the lack
of clear definitions. For (2), the inconsistent ground-truths
generate inconsistent gradients for back-propagation, lead-
ing to the difficulty of model convergence. In this section,
we qualitatively analyze the influence of semantic ambigu-
ity on landmark detection.

Before this analysis, we briefly introduce our heatmap-
based landmark detection network. Specifically, we use
a four stage Hourglass (HGs) [19]. It can generate the
heatmap which provides the probability of the correspond-
ing landmark located at every pixel, and this probability can
facilitate our analysis of semantic ambiguity.

Firstly, we find CNN provides a candidate region rather
than a confirmed position for a weak semantic point. In
Fig. 2 (a), we can see that the heatmap of a strong semantic
point is nearly Gaussian, while the 3D heatmap of a weak
semantic point has a ‘flat hat’, meaning that the confidences
in that area are very similar. Since the position with the
highest confidence is chosen as the output. The landmark
detector tends to output an unexpected random position on



(a) The difference between the heatmap of the eye corner (strong se-
mantic) points and the eye contour (weak semantic) points. Col 2 and
3 represent 2D and 3D heatmaps respectively. In the 3D Gaussian, the
x, y axes are image coordinates and z axis is the prediction confidence.
We can see the 3D heatmap of a weak semantic point has a ‘flat hat’.

(b) The predictions from a series of checkpoints after convergence.
When the model has roughly converged, we continue training and
achieve the predictions from different iterations. Red and green dots
denote the predicted and annotation landmarks, respectively. We can
see the predicted landmarks from different checkpoints fluctuate in the
neighborhood area of the annotated position (green dots).

Figure 2. The effect of semantic ambiguity

the ‘flat hat’.
Secondly, we analyze the ‘semantic ambiguity’ by vi-

sualizing how the model is optimized after convergence.
When the network has roughly converged, we continue
training the network and save a series of checkpoints. In
Fig. 2 (b), the eyebrow landmarks, from different check-
points fluctuate along with the edge of eyebrow, which al-
ways generates considerable loss to optimize. However,
this loss is ineffectual since the predicted points from dif-
ferent checkpoints also fluctuate in the neighborhood area
of the annotated position (green dots in Fig. 2 (b)). It can be
concluded that the loss caused by random annotation noises
dominate the back-propagated gradients after roughly con-
vergence, making the network training trapped into local
minima.

4. Semantically consistent alignment
In this section, we detail our methodology. In Section

4.1, we model the landmark detection problem using a prob-
abilistic model. To deal with the semantic ambiguity caused
by human annotation noise, we introduce a latent variable
ŷ which represents the ‘real’ ground-truth. Then we mod-
el the prior model and likelihood in Section 4.2 and 4.3,

respectively. Section 4.4 proposes an alternative optimiza-
tion strategy to search ŷ and train the landmark detector. To
recover the unconfidently predicted landmarks due to occlu-
sion and low quality, we propose a global heatmap correc-
tion unit (GHCU) in Section 4.5, which refines the predic-
tions by considering the global face shape as a constraint,
leading to a more robust model.

4.1. A probabilistic model of landmark prediction
In the probabilistic view, training a CNN-based land-

mark detector can be formulated as a likelihood maximiza-
tion problem:

max
W
L(W) = P (o|x;W), (1)

where o ∈ R2N is the coordinates of the observation of
landmarks (e.g. the human annotations). N is the number
of landmarks, x is the input image and W is the CNN pa-
rameters. Under the probabilistic view of Eq. (1), one pixel
value on the heatmap works as the confidence of one partic-
ular landmark at that pixel. Therefore, the whole heatmap
works as the probability distribution over the image.

As analyzed in Section 3, the annotations provided by
public databases are usually not fully credible due to the ‘se-
mantic ambiguity’. As a result, the annotations, in particu-
lar those of weak semantic landmarks, contain random nois-
es and are inconsistent among faces. In this work, we as-
sume that there exists a ‘real’ ground-truth without seman-
tic ambiguity and can better supervise the network training.
To achieve this, we introduce a latent variable ŷ as the ‘real’
ground-truth which is optimized during learning. Thus, Eq.
(1) can be reformulated as:

max
ŷ,W
L(ŷ,W) = P (o, ŷ|x;W)

= P (o|ŷ)P (ŷ|x;W),
(2)

where o is the observation of ŷ, for example, the annota-
tion can be seen as an observation of ŷ from human anno-
tator. P (o|ŷ) is a prior of ŷ given the observation o and
P (ŷ|x;W) is the likelihood.

4.2. Prior model of ‘real’ ground-truth
To optimize Eq. (2), an accurate prior model is impor-

tant to regularize ŷ and reduce searching space. We assume
that the kth landmark ŷk is close to the ok, which is the
observation of ŷ. Thus, this prior is modeled as Gaussian
similarity over all {ok, ŷk} pairs:

P (o|ŷ) ∝
∏
k

exp
(
− ‖o

k − ŷk‖2

2σ2
1

)
= exp

(
−
∑
k

‖ok − ŷk‖2

2σ2
1

)
,

(3)
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Figure 3. The search of ‘real’ ground-truth ŷ. Yellow and red box-
es represent the searching space N defined in Eq. (7) and the re-
gion corresponding to one candidate ŷ, respectively. The weight-
ed sum of likelihood and prior is computed as Eq. (8). The search
target is to find a position ŷ with the maximum output.

where σ1 can control the sensitivity to misalignment. To ex-
plain ok, we should know in advance that our whole frame-
work is iteratively optimized detailed in Section 4.4. ok is
initialized as the human annotation in the iteration, and will
be updated by better observation with iterations.

4.3. Network likelihood model
We now discuss the likelihood P (ŷ|x;W) of Eq. (2).

The point-wise joint probability can be represented by the
confidence map, which can be modelled by the heatmap of
the deep model. Note that our hourglass architecture learns
to predict heatmap consisting of a 2D Gaussian centered on
the ground-truth ŷk. Thus, for any position y, the more the
heatmap region around y follows a standard Gaussian, the
more the pixel at y is likely to be ŷk. Therefore, the like-
lihood can be modeled as the distribution distance between
the predicted heatmap (predicted distribution) and the stan-
dard Gaussian region (expected distribution). In this work,
we use Pearson Chi-square test to evaluate the distance of
these two distributions:

χ2(y|x;W) =
∑
i

(Ei − Φi(y|x;W))2

Ei
(4)

where E is a standard Gaussian heatmap (distribution),
which is a template representing the ideal response; i is the
pixel index; Φ is a cropped patch (of the same size as Gaus-
sian template) from the predicted heatmap centered on y.
Finally, the joint probability can also be modeled as a prod-
uct of Gaussian similarities maximized over all landmarks:

P (ŷ|x;W) = exp
(
−
∑
k

χ2
k(ŷ|x;W)

2σ2
2

)
(5)

where k is the landmark index, σ2 is the bandwidth of like-
lihood.

To keep the likelihood credible, we first train a network
with the human annotations. Then in the likelihood, we can
consider the trained network as a super annotator to guide
the searching of the real ground-truth. It results from the
fact that a well trained network is able to capture the statis-
tical law of annotation noise from the whole training set, so
that it can generate predictions with better semantic consis-
tency.

4.4. Optimization
Combining Eq. (2), (3) and (5) and taking log of the

likelihood, we have:

logL(ŷ,W) =
∑
k

(
− ‖o

k − ŷk‖2

2σ2
1

− χ2(ŷ|x;W)

2σ2
2

)
(6)

Reduce Searching Space To optimize the latent semanti-
cally consistent ‘real’ landmark ŷk, the prior Eq. (3) indi-
cates that the latent ‘real’ landmark is close to the observed
landmark ok. Therefore, we reduce the search space of
ŷk to a small patch centered on ok. Then, the optimization
problem of Eq. (6) can be re-written as:

min
ŷ,W
− logL(ŷ,W)

s.t. ŷk ∈ N (ok)
(7)

where N (ok) represents a region centered on ok.

Alternative Optimization To optimize Eq. (7), an alter-
native optimization strategy is applied. In each iteration,
ŷ is firstly searched with the network parameter W fixed.
Then ŷ is fixed and W is updated (landmark prediction net-
work training) under the supervision of newly searched ŷ.

Step 1: When W is fixed, to search the latent variable ŷ,
the optimization becomes a constrained discrete optimiza-
tion problem for each landmark:

min
ŷk

(‖ok − ŷk‖2

2σ2
1

+
χ2(ŷk|x;W)

2σ2
2

)
(8)

where all the variables are known except ŷk. We search ŷk

by going through all the pixels in N (ok) (a neighborhood
area of ok as shown in Fig. 3) and the one with minimal
loss in Eq. (8) is the solution. Since the searching space
N (ok) is very small, i.e. 17× 17 in this work for 256×256
heatmap, the optimization is very efficient.

Note that in the prior part of Eq. (8), ok is the obser-
vation of ŷk: In the 1st iteration, ok is set to the human
annotations which are the observation of human annotators;
From the 2nd iteration, ok is set to ŷk

t−1 (where t is the it-
eration). Note that ŷk

t−1 is the estimated ‘real’ ground-truth



Figure 4. Gradual convergence (one image represents one iteration) from the observation o (i.e. ŷ of the last iteration, green dots) to the
estimate of real ground-truth ŷ (red dots). For last image, the optimization converges because red and green dots are completely overlapped.
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(b) Correcting challenging points with GHCU on 300-VW.

Figure 5. Global Heatmap Correction Unit (GHCU)

from the last iteration. With the iterations, ŷk
t is converging

to the ‘real’ ground-truth because both the current observa-
tion ok (i.e. ŷk

t−1) and CNN prediction iteratively become
more credible.

Step 2: When ŷ is fixed, the optimization becomes:

min
W

∑
k

χ2(ŷk|x;W)

2σ2
2

(9)

The optimization becomes a typical network training pro-
cess under the supervision of ŷ. Here ŷ is set to the es-
timate of the latent ‘real’ ground-truth obtained in Step 1.
Figure 4 shows an example of the gradual convergence from
the observation o (ŷ of the last iteration) to the estimate of
real ground-truth ŷ. The optimization of ŷ in our semantic
alignment can easily converge to a stable position, which
does not have hard convergence problem like the traditional
landmark training as shown in Fig. 2b.

4.5. Global heatmap correction unit
Traditional heatmap based methods predict each land-

mark as an individual task without considering global face
shape. The prediction might fail when the model fits im-
ages of low-quality and occlusion as shown in Fig. 5b. The
outliers such as occlusions destroy the face shape and sig-
nificantly reduce overall performance.

Table 1. GHCU Architecture (N is the number of the landmarks)
Layers Output size GHCU
Conv1 128×128 [5×5, 64], stride 2
Conv2 64×64 [3×3, 64], stride 2
Conv3 32×32 [3×3, 32], stride 2
Conv4 16×16 [3×3, 32], stride 2
Conv5 8×8 [3×3, 16], stride 2
Conv6 4×4 [3×3, 16], stride 2
FC1 - 256
FC2 - 2N

Existing methods like local feature based CLM [4] and
deep learning based LGCN [16] apply a 2D shape PCA as
their post-processing step to remove the outliers. Howev-
er, PCA based method is weak to model out-of-plane ro-
tation and very slow (about 0.8 fps in LGCN [16]). In
this work, we propose a Global Heatmap Correction U-
nit (GHCU) to recover the outliers efficiently. We view
the predicted heatmaps as input and directly regress the
searched/optimized ŷ through a light weight CNN as shown
in Tab. 1. The GHCU implicitly learns the whole face shape
constraint from the training data and always gives facial-
shape landmarks, as shown in Fig. 5. Our experiments
demonstrate the GHCU completes fitting with the speed 8
times faster than PCA on the same hardware platform and
achieves higher accuracy than PCA.

5. Experiments
Datesets. We conduct evaluation on three challenging

datasets including image based 300W [23], AFLW [11],
and video based 300-VW [24, 26, 3].

300W [23] is a collection of LFPW [1], HELEN [13],
AFW [21] and XM2VTS [17], which has 68 landmarks.
The training set contains 3148 training samples, 689 test-
ing samples which are further divided into the common and
challenging subsets.

AFLW [11] is a very challenging dataset which has a
wide range of pose variations in yaw (−90◦ to 90◦). In
this work, we follow the AFLW-Full protocol [35] which
ignores two landmarks of ears and use the remaining 19
landmarks.

300-VW [24, 26, 3] is a large dataset for video-based
face alignment, which consists of 114 videos in various



conditions. Following [24], we utilized all images from
300W and 50 sequences for training and the remaining 64
sequences for testing. The test set consists of three cate-
gories: well-lit, mild unconstrained and challenging.

Evaluation metric. To compare with existing popular
methods, we conduct different evaluation metrics on differ-
ent datasets. For 300W dataset, We follow the protocol in
[22] and use Normalized mean errors (NME) which nor-
malizes the error by the inter-pupil distance. For AFLW,
we follow [34] to use face size as the normalizing factor.
For 300-VW dataset, we employed the standard normalized
root mean squared error (RMSE) [24] which normalizes
the error by the outer eye corner distance.

Implementation Details. In our experiments, all the
training and testing images are cropped and resized to
256×256 according to the provided bounding boxes. To
perform data augmentation, we randomly sample the an-
gle of rotation and the bounding box scale from Gaussian
distribution. We use a four-stage stacked hourglass net-
work [19] as our backbone which is trained by the opti-
mizer RMSprop. As described in Section 4, our algorith-
m comprises two parts: network training and real ground-
truth searching, which are alternatively optimized. Specif-
ically, at each epoch, we first search the real ground-truth
ŷ and then use ŷ to supervise the network training. When
training the roughly converged model with human annota-
tions, the initial learning rate is 2.5 × 10−4 which is de-
cayed to 2.5 × 10−6 after 120 epochs. When training with
Semantic Alignment from the beginning of the aforemen-
tioned roughly converged model, the initial learning rate is
2.5 × 10−6 and is divided by 5, 2 and 2 at epoch 30, 60
and 90 respectively. During semantic alignment, we search
the latent variable ŷ from a 17×17 region centered at the
current observation point o, and we crop a no larger than
25×25 patch from the predicted heatmap around curren-
t position for Pearson Chi-square test in Eq. (4). We set
batch size to 10 for network training. For GHCU, the net-
work architecture is shown in Tab. 1. All our models are
trained with PyTorch [20] on 2 Titan X GPUs.

5.1. Comparison experiment
300W. We compare our approach against the state-of-

the-art methods on 300W in Tab. 2. The baseline (HGs
in Tab. 2) uses the hourglass architecture with human an-
notations, which is actually the traditional landmark detec-
tor training. From Tab. 2, we can see that HGs with our
Semantic Alignment (HGs + SA) greatly outperform hour-
glass (HGs) only, 4.37% vs 5.04% in terms of NME on Full
set, showing the great effectiveness of our Semantic Align-
ment (SA). HGs+SA+GHC only slightly outperforms the
HGs+SA because the images of 300W are of high resolu-
tion, while GHCU works particularly well for images of
low resolution and occlusions verified in the following e-
valuations. Following [7] and [31] which normalize the

Table 2. Comparisons with state of the art on 300W dataset. The
error (NME) is normalized by the inter-pupil distance.

Method
subset

Com. Challenge Full

SDM [30] 5.60 15.40 7.52
CFSS [34] 4.73 9.98 5.76
TCDCN [32] 4.80 8.60 5.54
LBF [22] 4.95 11.98 6.32
3DDFA (CVPR16) [37] 6.15 10.59 7.01
3DDFA + SDM 5.53 9.56 6.31
RAR (ECCV16) [29] 4.12 8.35 4.94
TR-DRN (CVPR17) [15] 4.36 7.56 4.99
Wing (CVPR18) [7] 3.27 7.18 4.04
LAB (CVPR18) [28] 3.42 6.98 4.12
SBR (CVPR18) [6] 3.28 7.58 4.10
PCD-CNN (CVPR18) [12] 3.67 7.62 4.44
DCFE (ECCV18) [27] 3.83 7.54 4.55
HGs 4.43 7.56 5.04
HGs + SA 3.75 6.90 4.37
HGs + SA + GHCU 3.74 6.87 4.35
HGs + Norm 3.95 6.51 4.45
HGs + SA + Norm 3.46 6.38 4.03
HGs + SA + Norm + GHCU 3.45 6.38 4.02

in-plane-rotation by training a preprocessing network, we
conduct this normalization (HGs+SA+GHCU+Norm) and
achieve state of the art performance on Challenge set and
Full set: 6.38% and 4.02%. In particular, on Challenge
set, we significantly outperform the state of the art method:
6.38% (HGs+SA+GHCU+Norm) vs 6.98% (LAB), mean-
ing that our method is particularly effective on challenging
scenarios.

AFLW. Compared with 300W dataset with 68 points
AFLW has only 19 points, most of which are strong seman-
tic landmarks (corner points). Since our SA is particularly
effective on weak semantic points, we conduct experiments
on AFLW to verify whether SA generalizes well to the point
set, most of which are strong semantic points. For fair com-
parison, we do not compare methods using additional out-
side training data, e.g. LAB [28] used additional boundary
information from outside database. As shown in Tab. 3,
HGs+SA outperforms HGs, 1.62% vs 1.95%. It means that
even though corner points are easily to be recognized, there
is still random error in annotation, which can be correct-
ed by SA. It is also observed that HGs+SA+GHCU works
better than HGs+SA.

300-VW. Unlike the image-based databases 300W and
AFLW, 300-VW is video-based database, which is more
challenging because the frame is of low resolution and with
strong occlusions. The subset Category 3 is the most chal-
lenging one. From Tab. 4, we can see that HGs + SA great-
ly outperforms HGs in each of these three test sets. Fur-
thermore, compared with HGs + SA, HGs + SA + GHCU
reduce the error rate (RMSE) by 18% on Category 3 test
set, meaning that GHCU is very effective for video-based
challenges such as low resolution and occlusions because
GHCU considers the global face shape as constraint, being
robust to such challenging factors.



Table 3. Comparison with state of the art on AFLW dataset. The
error (NME) is normalized by the face bounding box size.

Method AFLW-Full (%)
LBF [22] 4.25
CFSS [34] 3.92
CCL (CVPR16) [35] 2.72
TSR (CVPR17) [15] 2.17
DCFE (ECCV18) [27] 2.17
SBR (CVPR18) [6] 2.14
DSRN (CVPR18) [18] 1.86
Wing (CVPR18) [7] 1.65
HGs 1.95
HGs + SA 1.62
HGs + SA + GHCU 1.60

Table 4. Comparison with state of the art on 300-VW dataset. The
error (RMSE) is normalized by the inter-ocular distance.

Method Category 1 Category 2 Category 3
SDM [30] 7.41 6.18
CFSS [34] 7.68 6.42 13.67
TCDCN [33] 7.66 6.77 14.98
TSTN [14] 5.36 4.51 12.84
DSRN (CVPR18) [18] 5.33 4.92 8.85
HGs 4.32 3.83 9.91
HGs + SA 4.06 3.58 9.19
HGs + SA + GHCU 3.85 3.46 7.51

5.2. Self evaluations
Balance of prior and likelihood As shown in Eq. (6),

the ‘real’ ground-truth is optimized using two parts: pri-
or and likelihood, where σ1 and σ2 determine the impor-
tance of these two parts. Thus, we can use one parameter
σ2
2/σ

2
1 to estimate this importance weighting. We evalu-

ate different values of σ2
2/σ

2
1 in Tab. 5. Clearly, the perfor-

mance of σ2
2/σ

2
1 = 0 (removing Semantic Alignment and

using human annotations only) is worst, showing the im-
portance of the proposed Semantic Alignment. We find that
σ2
2/σ

2
1 = 0.1 achieves the best performance, meaning that

the model relies much more (10 times) on prior than likeli-
hood to achieve the best trade-off.

Table 5. The effect of the ratio σ2
2/σ

2
1 in Eq. (8) on 300W.

σ2
2/σ

2
1 0 0.01 0.05 0.1 0.3 0.5 1

NME (%) 4.99 4.79 4.40 4.37 4.46 4.54 4.68

Template size. As discussed in the Section 3, for a po-
sition y, the similarity between the heatmap region around
it and standard Gaussian template is closely related to the
detection confidence. Therefore, the size of the Gaussian
template, which is used to measure the network confidence
in Eq. (5), can affect the final results. Table 6 reports
the results under different template sizes using the model
HGs+SA. Too small size (size=1) means that the heatmap
value is directly used to model the likelihood instead of Chi-
square test. Not surprisingly, the performance with size=1
is not promising. Large size (size=25) introduces more use-
less information, degrading the performance. In our experi-
ment, we find size=15 for AFLW and size=19 for 300W can

achieve the best result.

Table 6. The effects of template size on 300W and AFLW test sets.
template size 1 7 11 15 19 25
300W Full(%) 4.76 4.72 4.61 4.53 4.37 4.43
AFLW Full (%) 1.89 1.80 1.72 1.62 1.66 1.70

Analysis of the training of semantic alignment. To
verify the effectiveness of Semantic Alignment, we train a
baseline network using hourglass under the supervision of
human annotation to converge. Use this roughly converged
baseline, we continue training using 3 strategies as shown
in Fig. 6 and 7: baseline, SA w/o update (always using hu-
man annotation as the observation, see Eq. (6)) and SA (the
observation is iteratively updated). Fig. 6 and 7 visualize
the changes of training loss and NME on test set against
the training epochs, respectively. We can see that the base-
line curve in Fig. 6 and 7 do not decrease because of the
‘semantic ambiguity’. By introducing SA, the training loss
and test NME steadily drop. Obviously, SA reduces the ran-
dom optimizing directions and helps the roughly converged
network to further improve the detection accuracy.

We also evaluate the condition that uses semantic align-
ment without updating the observation o (‘SA w/o update’
in Fig. 6 and 7). It means o is always set to the human an-
notations. We can see that the curve of ‘SA w/o update’ can
be further optimized but quickly trapped into local optima,
leading to worse performance than SA. We assume that the
immutable observation o reduces the capacity of searching
‘real’ ground-truth ŷ.
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Figure 6. Training loss of the baseline, Semantic Alignment with-
out updating observation (SA w/o update) and Semantic Align-
ment (SA). The training starts at a roughly converged model
(trained using human annotations only) using 300W training set.

The update of Semantic Alignment. Under Semantic
Alignment framework, all the training labels are updated
after each epoch. To explore the effects of the number of
epochs on model convergence, we train different models by
stopping semantic alignment at different epochs. In Fig 8, it
is observed that the final performance keeps improving with
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Figure 7. NME of the baseline, Semantic Alignment without
updating observation (SA w/o update) and Semantic Alignmen-
t (SA). The training starts at a roughly converged model (trained
using human annotations only) on 300W full test set.

the times of semantic alignment, which demonstrates that
the improvement is highly positive related to the quality of
the learned ŷ. From our experiment, 10 epochs of semantic
alignment are enough for our data sets.
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Figure 8. NME vs Semantic Alignment update epochs on 300W
full test set

Quality of the searched ‘real’ ground-truth. One im-
portant assumption of this work is that there exist ‘real’
ground-truths which are better than the human annotations.
To verify this, we train two networks which are supervised
by the human annotations provided by public database and
the searched ‘real’ ground-truth, respectively. These two
detectors are a Hourglass model (HGs) and a ResNet [8] re-
gression model as [7]. As shown in Tab. 7, we can see that
on both models the ‘real’ ground-truth (SA) outperforms
the human annotations (HA). Clearly, our learned labels are
better than the human annotations, verifying our assumption
that the semantic alignment can find the semantic consistent
ground-truths.

Global heatmap correction unit. The 2D shape PCA
can well keep the face constraint and can be conducted
as a post-processing step to enhance the performance of

Table 7. The comparison of the labels searched by our Semantic
Alignment (SA) and human annotations (HA) on 300w-full set

Method HGs (HA) HGs (SA) Reg (HA) Reg (SA)
NME (%) 5.04 4.37 5.49 5.12

heatmap based methods, like CLM [4] and most recently L-
GCN [16]. We apply the powerful PCA refinement method
in LGCN and compare it with our GHCU. We evaluate on
300-VW where the occlusion and low-quality are partic-
ularly challenging. As shown in Tab. 8, our CNN based
GHCU outperforms PCA based method in terms of both
accuracy and efficiency.

Table 8. The comparison of GHCU with traditional PCA-based
refinement on 300-VW database.

Method Category 1 Category 2 Category 3 CPU Time (ms)
Baseline 4.06 3.58 9.19 -
PCA [16] 3.99 3.26 7.69 1219
GHCU 3.85 3.46 7.51 149

Ablation study. To verify the effectiveness of different
components in our framework, we conduct this ablation s-
tudy on 300-VW. For a fair comparison, all the experiments
use the same parameter settings. As shown in Tab. 9, Se-
mantic alignment can consistently improve the performance
on all subset sets, demonstrating the strong generalization
capacity of SA. GHCU is more effective on the challenge
data set (Category 3): 8.15% vs 9.91%; Combining SA and
GHCU works better than single of them, showing the com-
plementary of these two mechanisms.

Table 9. Effectiveness of SA and GHCU tested on 300-VW.
Semantic Alignment (SA) X X
GHCU X X
Category 1 3.85 4.03 4.06 4.32
Category 2 3.46 3.66 3.58 3.83
Category 3 7.51 8.15 9.19 9.91

6. Conclusion
In this paper, we first analyze the semantic ambiguity of

facial landmarks and show that the potential random noises
of landmark annotations can degrade the performance con-
siderably. To address this issue, we propose a a novel la-
tent variable optimization strategy to find the semantically
consistent annotations and alleviate random noises during
training stage. Extensive experiments demonstrated that our
method effectively improves the landmark detection accura-
cy on different data sets.
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