
Deconfounding Physical Dynamics with Global Causal Relation and Confounder
Transmission for Counterfactual Prediction

Zongzhao Li1,2, Xiangyu Zhu1,2, Zhen Lei1,2,3∗, Zhaoxiang Zhang1,2,3

1NLPR & CBSR, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences
{xiangyu.zhu,zlei}@nlpr.ia.ac.cn {lizongzhao2020,zhaoxiang.zhang}@ia.ac.cn

Abstract

Discovering the underneath causal relations is the fundamen-
tal ability for reasoning about the surrounding environment
and predicting the future states in the physical world. Coun-
terfactual prediction from visual input, which requires simu-
lating future states based on unrealized situations in the past,
is a vital component in causal relation tasks. In this paper,
we work on the confounders that have effect on the physi-
cal dynamics, including masses, friction coefficients, etc., to
bridge relations between the intervened variable and the af-
fected variable whose future state may be altered. We propose
a neural network framework combining Global Causal Rela-
tion Attention (GCRA) and Confounder Transmission Struc-
ture (CTS). The GCRA looks for the latent causal relation-
s between different variables and estimates the confounders
by capturing both spatial and temporal information. The CTS
integrates and transmits the learnt confounders in a residu-
al way, so that the estimated confounders can be encoded into
the network as a constraint for object positions when perform-
ing counterfactual prediction. Without any access to ground
truth information about confounders, our model outperforms
the state-of-the-art method on various benchmarks by fully u-
tilizing the constraints of confounders. Extensive experiments
demonstrate that our model can generalize to unseen environ-
ments and maintain good performance.

Introduction
One of the main distinctions that differentiate human-like
intelligence from others may lie in the understanding, rea-
soning and predicting ability, especially when the agen-
t is confronted with a novel and complicated environmen-
t (Spelke and Kinzler 2007; Martin-Ordas, Call, and Col-
menares 2008). Discovering the causality and inferring time-
invariant variables from visual input, has served as the core
abilities for intelligent agent to build a basic understanding
of the world (Glymour, Zhang, and Spirtes 2019). Further-
more, based on the obtained knowledge, agent can forecast
the future outcome involving external interventions. In this
paper, we utilize counterfactual prediction as our main quan-
titative indicator to probe model’s capability.

In counterfactual prediction tasks, interventions will be
employed to the system, producing situations that model has
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not experienced. Therefore, the model is supposed to discov-
er causal relations between the intervened variables and the
alternative outcomes. As shown in Figure 1 (a), the frames
display the transformation as well as the reorientation of
four objects. We wish the model to predict future trajecto-
ries of these objects if we had changed the initial frame by
applying do − operation (Pearl 2009) intervention. In our
case, do − operation contains object displacement or re-
moval. Note that counterfactual future prediction is different
from feedforward future prediction in Figure 1 (b), which
learns spatio-temporal regularities from a few past frames
to make future predictions. Counterfactual prediction aims
to estimate unobservable confounders as references. It ben-
efits from the observation of the original sequence I0...T .
It takes unobservable confounders into account, which has
an important impact on the system. Recently, there are a
few methods that model physical dynamics systems from an
object-centric view and predict the counterfactual outcome.
CoPhyNet (Baradel et al. 2020) models the interactions of
objects based on Graph Convolution Networks (Kipf and
Welling 2016) and further predicts the future outcomes by
GRU (Cho et al. 2014). V-CDN (Li et al. 2020c) propos-
es a keypoint-based model to infer the hidden confounders
and predict the future movements of the keypoints. Although
they can discover the relations of objects and make future
predictions, there is still room for further improvement.

In this paper, we concentrate on the confounders, which
is tied to physics laws and independent of the data, to tack-
le counterfactual prediction tasks. Our model aims to esti-
mate the unobservable confounders, such as masses, fric-
tion coefficients, and gravity, reason interactions across d-
ifferent objects, and discover the relations between the in-
tervened variable with the variable whose alternative future
should be predicted. Our model first learns the reflect func-
tion to represent each object as a compact vector and us-
es a Graph Convolution Network (GCN) (Kipf and Welling
2016) to update object embeddings. Then it reasons causal
relationships of objects and deconfounds the object embed-
dings based on a proposed Global Causal Relation Attention
(GCRA). GCRA captures the spatial-temporal information
across objects and frames, and contributes to the accurate
identification of the confounders. Finally, reposed on the in-
ferred confounders and the modified initial state, a new for-
ward module Confounder Transmission Structure (CTS) in-



Figure 1: The counterfactual prediction task (a) versus the feedforward prediction task (b). I0 and I1...T refer to the observations
of the original sequence. C refer to the confounders and do refer to the do − operation. Ī0 refers to the modified initial
observation and Ī1...T refer to the counterfactual outcomes. Compared with the feedforward prediciton, the counterfactual one
considers confounding variable, which is unobservable whereas governs the behavior of the system. The confounders can be
instantiate as the masses, friction coefficients and gravity in physical systems.

tegrates and transmits these information in a residual way
to forecast the future trajectory of each object. We evalu-
ate our model in different settings of CoPhy (Baradel et al.
2020) benchmark and show superior performance over the
state-of-the-art. Though making long-term prediction is dif-
ficult even for human beings, by fully utilizing information
from confounders, our model achieves good performance,
and generalizes well to novel cases, even without the access
to the ground truth confounder labels.

Related Work
Intuitive Physics Understanding and representing intuitive
physics is crucial for modelling interactions between object-
s and predicting the dynamics, which has attracted signifi-
cant attention in machine learning society (Mottaghi et al.
2016; Kubricht, Holyoak, and Lu 2017; Sun et al. 2018; D-
ing et al. 2021; Li et al. 2020b, 2019; Liu et al. 2018; Ham-
rick, Battaglia, and Tenenbaum 2011; Stanić and Schmid-
huber 2019). Early approaches (Wu et al. 2015, 2016)
make full use of the information from physical properties
and object attributes to produce follow-up predictions. Re-
searchers also leverage Convolutional Neural Network (C-
NN) (Krizhevsky, Sutskever, and Hinton 2012) to investi-
gate methods for reasoning physics from visual input (Wu
et al. 2017; Fragkiadaki et al. 2016; Hamrick, Battaglia,
and Tenenbaum 2011; Battaglia, Hamrick, and Tenenbaum
2013). In most cases, these methods either acquire the su-
pervision of ground truth information about latent physi-
cal parameters or lack the ability to model the relationships
across objects appropriately. The Interaction Network (IN)
proposed by (Battaglia et al. 2016) takes advantage of Graph
Neural Networks (Scarselli et al. 2008) to capture the inter-
actions between entities in the scene. Similar to the Inter-
action Network, (Janner et al. 2019; Battaglia et al. 2018;
Yi* et al. 2020; Baradel et al. 2020; Li et al. 2020a) show
encouraging results in physics reasoning. However, because
they neglect the causal chain between objects in long-term
sequence, they are unable to discover latent interactions ef-

fectively.

Causal Inference Causal inference has garnered a lot
of attention in recent works (Chalupka, Perona, and Eber-
hardt 2014; Lopez-Paz and Oquab 2016; Rojas-Carulla, Ba-
roni, and Lopez-Paz 2018) due to the limitations of tradi-
tional statistical techniques (Pearl 2009). Methods for mea-
suring the effects of multiple variables are being investigat-
ed by researchers. (Lopez-Paz and Oquab 2016; Lopez-Paz
et al. 2017) concern discovering causal relations between
variables by using neural networks or GANs (Goodfellow
et al. 2014). (Kocaoglu et al. 2018) discovers causal effect
with true observational and interventional data. (Mao et al.
2019) creates an object-based scene representation and in-
fers causality via video reasoning.

Visual Reasoning People also study the task of visual
reasoning in order to better assess model’s capability of dy-
namics modelling (Ehrhardt et al. 2019; Finn, Goodfellow,
and Levine 2016; Fraccaro et al. 2017; Hafner et al. 2019;
Lei et al. 2018; Ha and Schmidhuber 2018; Finn and Levine
2017). Models need to make future predictions based on the
images provided, such as predicting the stability of the phys-
ical structures (Lerer, Gross, and Fergus 2016; Groth et al.
2018; Jia et al. 2014; Li, Leonardis, and Fritz 2017; Li et al.
2016), tracking objects in the scenario (Ye et al. 2018), in-
ferring physical properties from raw images (Agrawal et al.
2016), estimating physical plausibility (Riochet et al. 2018;
Tompson et al. 2017), or making counterfactual prediction
on account of the interventions given by external force (Ba-
radel et al. 2020).

In our work, we first propose GCRA to model interactions
between objects in long-term video frames, which is effec-
tive for deconfounding process. Then confounder variables
are reused in a residual way in CTS, which facilitates the
counterfactual prediction. We train our model with no su-
pervision of confounders, so that it can generalize well to
novel settings.



Reasoning and Predicting
This section outlines the details of our model, which con-
tains detecting object representations from images, discov-
ering relationships between objects, estimating confounders,
and making counterfactual predictions. Our model is trained
from visual inputs without supervision of the confounders.

Problem formulation. We study the task of visual rea-
soning in physical reality. Considering a dataset of vari-
ous configurations of confounders, such as masses and fric-
tion coefficients, and trajectories generated under the effect
of physical laws. Each sample in the dataset contains two
video sequences of T RGB frames. The first sequence I =
{I0, ..., IT } is observable for the model, which represents
the evolution of the objects’ states. The second one Ī =
{Ī0, ..., ĪT } is called counterfactual sequence, where the ini-
tial frame I0 is transformed to Ī0 after the do− operation.
The rest of the sequence are counterfactual outcomes ac-
cordingly. Given the data, we can formalize the problem as
follows. The model takes a raw video I = {I0, ..., IT } as
input, then it is supposed to model interactions between ob-
jects, estimate confounders in the scene. Afterwards, given
the modified initial frame Ī0, the model is asked to predict
the counterfactual outcomes Ī = {Ī1, ..., ĪT }.

Overview of the model. Our model takes raw RGB
frames as inputs. We firstly extract object-centric features
from images and detect corresponding 3D positions us-
ing a Convolutional Neural Network (CNN), which uses
ResNet18 as backbone.

Vt = fP (It), V̄0 = fP (Ī0), t = 0, ..., T,

Vt = {oti}, V̄0 = {ō0i }, i = 1, ...,M,
(1)

where fP is the perception module to detect M objects,
the oti corresponds 3D position information for object i at
t timestep. Next, we use a Graph Neural Network (GNN)
to update object embeddings, denoted as the V̌t = {ǒti}.
The GNN we adapt is the modified version of the Interac-
tion Network (IN) (Battaglia et al. 2016). Then an inference
module fI is applied to take the object embeddings as input
and infer latent representations of the confounders, denoted
as Ci for each object in the scene,

C = fI(ǒ0:Ti ), C = {Ci}, i = 1, ...,M. (2)

Finally, a forward function fF , aims to predict the counter-
factual outcomes, i.e., the 3D coordinates of M objects at
t+ 1 timestep based on the estimated confounders C.

V̄t+1 = fF (V̄0:t, C), t = 0, ..., T − 1. (3)

Preliminary. In our pipeline we first utilize the Convolu-
tional Neural Network (CNN) as the perception module to
extract object-centric features and convert them into 3D po-
sitions through an MLP, denoted as Vt = {oti, i = 1, ...,M}.
After the oti we have obtained, we use Graph Neural Net-
work (GNN) to model interactions between different objects
and update the object embeddings coarsely. We first view the
M objects in each frame as a fully-connected object graph
Gto = (Vt, Et), the nodes Vt = {oti} are associated to the

objects, and the edge (oti, o
t
j) ∈ Et represents the object in-

teractions between object i and j. Specifically,
Vt = {oti, }, i = 1, ...,M, t = 0, ...T

eti =
1

Nj

∑
j 6=i

fR(oti, o
t
j), ǒ

t
i = fG(eti,

1

M

M∑
i=1

eti, o
t
i),

V̌t = {ǒti}, i = 1, ...,M, t = 0, ...T

(4)

where ǒti represents the updated object embeddings, fR is
the function to calculate relational reasoning results, the goal
of the fG is to combine the relational embeddings and the
original object embeddings.

Global Causal Relation Attention (GCRA)
To approximate the latent representations of confounders
by deconfounding the object embeddings, we propose the
Global Causal Relation Attention (GCRA) as the inference
module fI . Our goal is to capture the relation information a-
mong objects at spatial level as well as temporal level simul-
taneously. Previous method prefers to run a dedicated RNN
for each object and considers the last hidden state of the re-
current network as the confounders (Baradel et al. 2020).
It ignores the indirect relations between different objects at
different frames. Moreover, the RNN is employed in each
object independently and the interactions between objects
are not updated during this process. Therefore, sophisticated
information across objects and long-term frames cannot be
well extracted to estimate confounders.

In our work, we aim to encode the relationships between
different objects at different frames in long-term, so that
the model can discover and leverage indirect causal chain-
s. To this end, we propose Global Causal Relation Atten-
tion (GCRA) to model interactions and infer the confounder-
s over object embeddings in each frame of the video se-
quence. We extend transformer-based model adapting scaled
dot-product attention (Vaswani et al. 2017). It computes the
relevance between objects and can be described as follows:

Attention(Qs
i ,K

t
j , V

t
j ) = softmax(

Qs
i (K

t
j)

T

√
dk

)V t
j ,

i, j = 1, ...,M,

s, t = 1, ..., T,

(5)

where theQs
i ,Kt

j and V t
j are queries, keys and values calcu-

lated by multiplying the input matrix X and the correspond-
ing Wqsi, Wktj and Wvtj . X represents the embedding of
object, dk represents the dimension of the key. The subscript
i, j denote the index of object, the superscript s, t denote the
index of frame. Note that when i, j and s, t are different, two
object states from different frames are interacted. Besides,
long-term interactions across many frames can be modelled
when i and j are far away. The temporal and spatial informa-
tion are encoded by applying interframe attention as well as
intraframe attention. This is of great importance for the con-
founders estimation. The ablation experiments also demon-
strate that GCRA is efficient in various environments.

The outputs of GCRA module are latent representations,
which are denoted as the confounders. Specifically, we have:

C = fI(ǒ0:Ti ), C = {Ci}, i = 1, ...,M, (6)



Figure 2: Architecture of our model. The model takes raw images I = {I0, ..., IT } as input and first uses a perceptual module
to extract abstract representations which constitute a fully-connected graph. Then GCRA is used as an inference module to
discover causal relations and infer the confounders. Finally CTS, a forward module that makes counterfactual predictions
Ī = {Ī1, ..., ĪT } using the estimated confounders as well as the modified initial frame Ī0. We train this model without any
access to the ground truth information about confounders.

where fI represents the GCRA module, depicting decon-
founding process. Ci represents the confounders of i object.
This module could generalize to different number of objects
as well as different shape of objects in various settings.

Confounder Transmission Structure (CTS)
Conditioned on the inferred confounders, we would like to
make counterfactual predictions, i.e., 3D positions of all ob-
jects. We propose the Confounder Transmission Structure
(CTS) as the forward module fF , to predict the counterfac-
tual outcomes, by encoding and propagating confounders in-
formation. The experiments also validate our effectiveness.

We assume that there is a latent causal graph Gtc under the
scene. The node represents object attributes like masses and
friction coefficients, i.e., confounders. The edge represents
contact relations, which can be explained as the interaction
force between objects. Firstly, a Graph Neural Network φ is
used to propagate node and edge information based on the
causal graph Gtc as well as the modified object graph Ḡto. Ḡto
is produced by performing do− operation (e.g. change the
initial positions of objects or remove one of the objects in
the scene). We concatenate Ḡto and Gtc since they have the
same structure,

Gtc = (C, Etc), C = {Ci}, Etc = {eti,j},
V̄0:t = {ō0:ti }, ē0:ti,j = [ō0:ti : ō0:tj ], Ē0:to = {ē0:ti,j},
Ḡto = (V̄0:t, Ē0:to ), [Ḡto : Gtc] = ([V̄0:t : C], [Ē0:to : Etc ])

(õti, ẽ
t
i,j) = φ(Ḡto,Gtc),

t = 0, ..., T, i, j = 1, ...,M,

(7)

where ō0:ti represents the counterfactual outcomes predicted

by CTS, ē0:ti,j is simply stacked by ō0:ti and ō0:tj , edge eti,j is
randomly initialized and represents the contact information
between objects i and object j. It is adaptively learned by the
model without the ground truth information. When the mod-
el classifies the edge as ”no relations”, it means that object
i and object j of this edge have no direct contact probably,
and model tends to decrease the subsequent transmission of
information between these two objects.

Then we add residual links that connect ō0:ti and the em-
beddings produced by φ. We further concatenate them with
the causal graph Gtc, pass all these information through a
recurrent network to aggregate the information at temporal
level,

ôi = RNN(õti, ō
0:t
i ,Gtc), t = 0, ..., T,

êi,j = RNN(ẽti,j , ē
0:t
i,j ,Gtc), t = 0, ..., T,

(8)

where we use GRU as the recurrent network, which enables
our model to deal with objects of variable numbers and input
sequences of variable lengths.

Taking the outputs of GRU as input, we exert another
Graph Neural Network ϕ to directly make future prediction
of object trajectory without forecasting the stability in ad-
vance. To accomplish more accurate results, we reuse the
confounders and add residual links again. Specifically,

ōt+1
i = ϕ([Gtc : õti : ôti], [ẽ

t
i,j : êti,j ]), t = 0, ..., T − 1 (9)

where ōt+1
i is denoted as the predicted 3D position of objects

at next timestep. Finally, we can make long-term counterfac-
tual predictions by applying CTS iteratively. In contrast to
the previous work, we have a completely different definition
of the causal graph Gtc in our paper. Our node denotes the



physical properties and our edge denotes the directly con-
taction, so that it can better depict the latent causal relations.

Training and Optimizing
The training of perception module is separated from the rest
of the whole model. It takes the raw images from video se-
quences as input and outputs the 3D positions of each object
in the image. The inference module and the forward module
are jointly trained in an end-to-end fashion without any ac-
cess to the ground truth information about confounders. We
train it with the following loss function:

Le2e =

T∑
t=0

M∑
m=1

Lmse(x
t
m, x

t∗
m) (10)

where Le2e represents mean squared error measuring the
gap between the predicted 3D position xtm and the ground
truth 3D position xt∗m.

Experiments
Environment. We evaluate our model in two benchmarks
(Baradel et al. 2020). One involves stacking blocks in 3D
space to construct towers in each sample, another one con-
sists of one moving object and one static object (cylinder or
sphere) in each sample. Both of the benchmarks are param-
eterized by unobservable variables. They are also denoted
as the confounders, such as masses, friction coefficients and
gravity. We follow the evaluation protocol in the original pa-
per in both two benchmarks. Mean Square Error (MSE) is
used to measure the prediction performance (lower score in-
dicates better performance).
BlocktowerCF : Each sample shows K (K = 3, 4)

cubes initialized with a random position and angle. The
do − operation includes the removal and displacement for
one of the blocks. In our experiments we use all data from
the dataset, which contains 51.7k, 14.6k and 7.3k samples
for training, validation and testing separately.
CollisionCF : Each sample shows a moving object col-

liding with a static object, and the do − operation is just
about displacement for one object. Similar to the previous
one, we exploit all samples from the benchmark, which con-
sists of 30k, 7.9k and 6k data for training, validation and
testing respectively.

The evaluation of our model’s performance can be de-
scribed in the following two aspects:

• Whether the counterfactual prediction made by the mod-
el is accurate?
• How well can the model generalize to the settings that are

unseen in the training period, including unseen number
of blocks as well as unseen type of objects?

Counterfactual Prediction
We compare our model with the state-of-the-art method by
evaluating the mean square error between the counterfac-
tual prediction and the ground truth. The state-of-the-art
method CoPhyNet (Baradel et al. 2020) is a counterfactu-
al prediction method as ours. The Interaction Network (IN)

Method 3→3 3→4 4→4 4→3
IN 31.8 52.4 52.1 34.2

NPE 33.1 52.3 52.8 35.0
CoPhyNet 29.4 48.2 45.3 30.1
CoPhyNet∗ 23.7 48.0 45.2 26.0

Ours 22.5±0.3 47.6±0.2 43.4±0.1 24.7±0.2

Table 1: Comparison between the performance of
our method with the state-of-the-art method on the
BlocktowerCF . NumA→NumB (such as 3→4) means we
train the model on the dataset that contains NumA objects,
while we test the model on the dataset that contains NumB
objects. CoPhyNet is cited from (Baradel et al. 2020).
CoPhyNet∗ represents the reproduce results. The value is
the MSE (*100) on 3D pose average over time.

Method all→all s→ c c→ s
IN 70.1 71.5 72.0

NPE 69.7 71.0 69.9
CoPhyNet 17.3 22.0 15.2
CoPhyNet∗ 14.8 13.4 13.8

Ours 13.0±0.3 9.6±0.2 10.2±0.4

Table 2: Comparison between the performance of
our method with the state-of-the-art method on the
CollisionCF . The s represents the sphere object, while the
c represents the cylinder object. TypeA→TypeB (such as
s→c) means we train on the dataset that the moving object
is of TypeA, while we test on the dataset that the moving
object is of TypeB. CoPhyNet is cited from (Baradel et al.
2020). CoPhyNet∗ represents the reproduced results. The
value is the MSE (*100) on 3D pose average over time.

(Battaglia et al. 2016) captures the interactions across al-
l objects in the environment, and the Network Physics En-
gine (NPE) (Chang et al. 2016) models object interactions
by considering only neighbouring objects. Both of them are
non-counterfactual baselines. They make future predictions
directly based on the past frames after do−operation with-
out regard for the confounders. In comparison to the state-
of-the-art method, our model performs better in all settings,
as demonstrated in Table 1 and Table 2. Furthermore, it al-
so outperforms two non-counterfactual baselines by a large
margin. Figure 3 and Figure 4 are the qualitative compar-
isons between our method and CoPhyNet in two benchmark-
s, further demonstrating that our model can better infer the
future states.

Ablation Study
To have a better understanding of how each submodule con-
tributes to the final results, we conduct experiments about
two variants and evaluate them in both BlocktowerCF and
CollisionCF dataset, shown in Table 3.

Global Causal Relation Attention (GCRA). We first
show the effectiveness of our GCRA module. Compared to
the CoPhyNet, we replace the confounders estimation com-
ponent with the GCRA while the remainder of the model



Figure 3: We show the qualitative comparisons of counterfactual predictions between our method and CoPhyNet in the
CollisionCF scenario. I0...T represent the original sequence, while Ī0...T represent the counterfactual outcome sequence.

Figure 4: We show the qualitative comparisons of counterfactual predictions between our method and CoPhyNet in the
BlocktowerCF scenario. I0...T represent the original sequence, while Ī0...T represent the counterfactual outcome sequence.



Component BlocktowerCF CollisionCF
GCRA CTS

0.452 0.148
X 0.445 0.141
X X 0.434 0.130

Table 3: Ablative results on 4→4 subset of BlocktowerCF
and all→all subset of CollisionCF . The value is the MSE
on 3D pose average over time.

Method 3→3 3→4 4→4 4→3
CoPhyNet w/o GT 0.294 0.482 0.453 0.301

CoPhyNet GT 0.296 0.467 0.481 0.297
Ours w/o GT 0.225 0.476 0.434 0.247

Ours GT 0.222 0.493 0.405 0.243

Table 4: Comparison results of the forward submodule in
different methods using ground truth confounder quantities
(GT) or using the estimated confounder quantities (w/o GT)
as the input on the BlocktowerCF . The value is the MSE
on 3D pose average over time.

remains the same. GCRA not only bridges the relationships
across objects in a single frame, but also applies long-term
cross-frame self-attention. As shown in Table 3, GCRA pro-
motes the ability of predicting counterfactual outcomes. It
captures more spatial and temporal information about the
objects than the vanilla RNN.

Confounder Transmission Structure (CTS). In CTS,
we consider an unobservable causal graph additionally to
better depict relations across different objects. Besides, we
reuse the confounders as well as the updated object embed-
dings in a residual way. The results are presented in Table 3,
demonstrating that our method has better performance than
CoPhyNet. Overall, by combining both GCRA and CTS, we
achieve the best results.

Generalization
We also evaluate our model’s ability to generalize to un-
seen physical environments. Specifically, in blocktowerCF
dataset, the data for training and testing contains differen-
t number of objects (3→4 and 4→3). The results shown in
Table 1 demonstrate our model can better extrapolate to new
physical settings well. Besides, in CollisionCF dataset, we
also evaluate the setting that the moving object in training
data and testing data has different types (cylinder or sphere).
As shown in Table 2, though there is a great discrepancy
between the objects, our model displays a strong ability to
generalize to novel environments, achieves the best perfor-
mance among all the other methods.

Forward Module with GT Confounders
To further prove the superiority of our CTS submodule, we
assume the ground truth confounder labels are accessible
and see if CTS can well utilize the information from con-
founders. Specifically, we replace the estimated confounder-

Method 4→4 all→all
CoPhyNet 0.463 0.161

Ours 0.447 0.132

Table 5: The performance using high-dimensional embed-
dings as input on 4→4 subset in BlocktowerCF and
all→all subset in CollisionCF . The value is the MSE on
3D pose average over time in validation set.

s with the ground truth confounder quantities in both Co-
PhyNet and our model, the results are shown in Table 4. We
can see CoPhyNet achieves even worse performance in some
settings, showing that it cannot make good use of informa-
tion from ground truth confounders. In contrast, our predic-
tion module achieves higher performance with the help of
ground truth confounders by maintaining vital information
during transmission.

Modelling using High-dimensional Input
Previous works claim that desired counterfacutal predic-
tion should be performed on the high-dimensional embed-
dings that encode appearance, context and scenarios. How-
ever, most of them use 3D coordinates of objects as the
input. In this experiment, we explore whether our method
can extend to this challenging problem and handle high-
dimensional embeddings besides 3D positions. To this end,
we employ Region Proposal Interaction Network (RPIN)
(Qi et al. 2021), which is an interaction network based on the
region proposals proposed recently to extract a feature map
as a high-level representation. Based on the features extract-
ed by RPIN, we incorporate it with our model by replacing
the 3D coordinates ō0i in Equation 1 with the features. Be-
sides, we also replace the input for CoPhyNet. As shown in
Table 5, our method still outperforms CoPhyNet, validating
that our model can adapt more to this challenging problem
with high-level features as the input.

Conclusion
In this paper, we propose a neural network framework com-
bining Global Causal Relation Attention (GCRA) and Con-
founder Transmission Structure (CTS) to estimate latent
confounders and predict counterfactual outcomes. Our mod-
el captures the spatial-temporal information through inter-
frame and cross-frame attention manners. We also encode
the estimated confounders into forward module and propa-
gate them in a residual way. Our model outperforms state-
of-the-art counterfactual model on challenging benchmarks.
Further experiments also show the robustness and general-
ization ability of our model when confronted with various
input information. We hope that our method could serve as
a strong framework for future studies of visual reasoning,
especially in intuitive physics learning.

Appendices
Generalization results on BlocktowerCF To further eval-
uate the generalization ability of our model, we conduct
the experiment on unseen confounder combinations in the



BlocktowerCF . In comparison to other methods, our mod-
el generalizes well in novel environments, as shown in Table
6.

Method 3→3 4→4
IN 0.298 0.480

NPE 0.319 0.476
CoPhyNet 0.289 0.423

CoPhyNet∗ 0.282 0.447
Ours 0.268±0.002 0.420±0.003

Table 6: Comparison between the performance of
our method with the state-of-the-art method on the
BlocktowerCF . NumA→NumB (such as 3→3) means
we train the model on the dataset that contains NumA
objects, and we test the model on the dataset that contains
NumB objects. Test confounder configurations are different
from training period (50/50 split). CoPhyNet is cited from
(Baradel et al. 2020). CoPhyNet∗ represents the reproduce
results. The value is the MSE on 3D pose average over time.

Generalization results on CLEVRER We study the
model performance on CLEVRER (Yi* et al. 2020) to see
whether our model can generalize to scenes with more ob-
jects and more frames. For each video in CLEVRER, sev-
eral questions in different aspects are posed to measure the
model’s reasoning and understanding ability. Despite of the
descriptive questions (”what happened?”) that most visual
question answering (VQA) datasets own, CLEVRER con-
tains the explanatory questions (”why did the collision hap-
pen?”), predictive questions (”what will happen next?”), and
counterfactual questions (”what would happen under an un-
realized situation”).

To apply our model on CLEVRER, we simplify both the
GCRA module and the CTS module to incorporate them
with the IODINE (Greff et al. 2019). IODINE uses an amor-
tized iterative variational framework to learn latent objec-
t representations. We aim to use our model to enhance
the latent representations by modeling object relationships.
Therefore, we make a few minor adjustments to our model
to better fit this dataset. Inspired by (Tang et al. 2022), we
first use the GCRA module to estimate the physical property,
and then employ the CTS module to compute the object dy-
namics. We conduct all experiments on CLEVRER based on
ALOE (Ding et al. 2021). The main difference between our
method with ALOE is that ALOE takes scene representa-
tions from MONet (Burgess et al. 2019), while we leverage
the representations produced by CTS. Table 7 shows the per-
formance comparison between our model with other meth-
ods. Our model outperforms IODINE in most settings, indi-
cating that our model strengthens the latent representations
by estimating the physical property and computing the ob-
ject dynamics. Further comparison experiments with ALOE
show that our model achieves comparable results with state-
of-the-art method, which demonstrates the effectiveness of
our model when generalized to more complex environments.

Method Des Exp Pre Cou
MAC (V+) (Yi* et al. 2020) 86.4 22.3 42.9 25.1

NS-DR (Yi* et al. 2020) 88.1 79.6 68.7 42.2
DCL (Chen et al. 2021) 90.7 82.8 82.0 46.5

IODINE (Greff et al. 2019) 92.8 95.6 80.2 71.3
ALOE (Ding et al. 2021) 94.0 96.0 87.5 75.6

Ours 94.8 95.5 89.2 75.4

Table 7: Performance (per question accuracy) comparison
with the state-of-the-art methods MAC (V+), NS-DR, D-
CL, IODINE and ALOE on CLEVRER. Des, Exp, Pre and
Cou in the table represent the ”Descriptive”, ”Explanatory”,
”Predictive” and ”Counterfactual” respectively.

Dataset Both the CoPhy and the CLEVRER are synthet-
ic video datasets of physical events. Each video in CoPhy
contains 30 frames for BlocktowerCF and 15 frames for
CollisionCF at resolution 224× 224, we use all the frames
for training, validating and testing. Each video in CLEVR-
ER contains 128 frames at resolution 480 × 320, we extract
images every 4 frames and ensure that at least one collision
event is included, as in (Tang et al. 2022).

Acknowledgements
This work was supported by the National Key Research
& Development Program (No. 2020YFC2003901), Chinese
National Natural Science Foundation Projects #61876178,
#61806196, #61976229, #62176256, #62106264, Youth In-
novation Promotion Association CAS (#Y2021131), and the
InnoHK program.

References
Agrawal, P.; Nair, A.; Abbeel, P.; Malik, J.; and Levine, S.
2016. Learning to poke by poking: Experiential learning of
intuitive physics. arXiv preprint arXiv:1606.07419.
Baradel, F.; Neverova, N.; Mille, J.; Mori, G.; and Wolf, C.
2020. CoPhy: Counterfactual Learning of Physical Dynam-
ics. In International Conference on Learning Representa-
tions.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V. F.; Malinowski, M.; Tacchet-
ti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; aglar Glehre;
Song, H. F.; Ballard, A. J.; Gilmer, J.; Dahl, G. E.; Vaswani,
A.; Allen, K. R.; Nash, C.; Langston, V.; Dyer, C.; Heess,
N.; Wierstra, D.; Kohli, P.; Botvinick, M.; Vinyals, O.; Li,
Y.; and Pascanu, R. 2018. Relational inductive biases, deep
learning, and graph networks. CoRR, abs/1806.01261.
Battaglia, P. W.; Hamrick, J. B.; and Tenenbaum, J. B. 2013.
Simulation as an engine of physical scene understanding.
Proceedings of the National Academy of Sciences, 110(45):
18327–18332.
Battaglia, P. W.; Pascanu, R.; Lai, M.; Rezende, D. J.; and
Kavukcuoglu, K. 2016. Interaction Networks for Learning
about Objects, Relations and Physics. In NIPS, 4502–4510.
Burgess, C. P.; Matthey, L.; Watters, N.; Kabra, R.; Higgin-
s, I.; Botvinick, M.; and Lerchner, A. 2019. Monet: Un-



supervised scene decomposition and representation. arXiv
preprint arXiv:1901.11390.
Chalupka, K.; Perona, P.; and Eberhardt, F. 2014. Visual
causal feature learning. arXiv preprint arXiv:1412.2309.
Chang, M. B.; Ullman, T.; Torralba, A.; and Tenenbaum,
J. B. 2016. A compositional object-based approach to learn-
ing physical dynamics. arXiv preprint arXiv:1612.00341.
Chen, Z.; Mao, J.; Wu, J.; Wong, K.-Y. K.; Tenenbaum, J. B.;
and Gan, C. 2021. Grounding Physical Concepts of Objects
and Events Through Dynamic Visual Reasoning. In Inter-
national Conference on Learning Representations.
Cho, K.; van Merrienboer, B.; aglar Glehre; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
Phrase Representations using RNN Encoder-Decoder for S-
tatistical Machine Translation. In EMNLP, 1724–1734.
Ding, D.; Hill, F.; Santoro, A.; Reynolds, M.; and Botvinick,
M. 2021. Attention over Learned Object Embeddings En-
ables Complex Visual Reasoning. In Beygelzimer, A.;
Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances
in Neural Information Processing Systems.
Ehrhardt, S.; Monszpart, A.; Mitra, N. J.; and Vedaldi, A.
2019. Taking visual motion prediction to new heightfields.
Computer Vision and Image Understanding, 181: 14–25.
Finn, C.; Goodfellow, I.; and Levine, S. 2016. Unsupervised
learning for physical interaction through video prediction.
Advances in neural information processing systems, 29: 64–
72.
Finn, C.; and Levine, S. 2017. Deep visual foresight for
planning robot motion. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), 2786–2793.
IEEE.
Fraccaro, M.; Kamronn, S.; Paquet, U.; and Winther, O.
2017. A Disentangled Recognition and Nonlinear Dynamics
Model for Unsupervised Learning. In NIPS, 3604–3613.
Fragkiadaki, K.; Agrawal, P.; Levine, S.; and Malik, J. 2016.
Learning Visual Predictive Models of Physics for Playing
Billiards. In ICLR (Poster).
Glymour, C.; Zhang, K.; and Spirtes, P. 2019. Review of
causal discovery methods based on graphical models. Fron-
tiers in genetics, 10: 524.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.
Greff, K.; Kaufman, R. L.; Kabra, R.; Watters, N.; Burgess,
C.; Zoran, D.; Matthey, L.; Botvinick, M.; and Lerchner,
A. 2019. Multi-object representation learning with iterative
variational inference. In International Conference on Ma-
chine Learning, 2424–2433. PMLR.
Groth, O.; Fuchs, F. B.; Posner, I.; and Vedaldi, A. 2018.
Shapestacks: Learning vision-based physical intuition for
generalised object stacking. In Proceedings of the European
Conference on Computer Vision (ECCV), 702–717.
Ha, D.; and Schmidhuber, J. 2018. Recurrent World Models
Facilitate Policy Evolution. In NeurIPS, 2455–2467.

Hafner, D.; Lillicrap, T.; Fischer, I.; Villegas, R.; Ha, D.;
Lee, H.; and Davidson, J. 2019. Learning latent dynamics
for planning from pixels. In International Conference on
Machine Learning, 2555–2565. PMLR.
Hamrick, J.; Battaglia, P.; and Tenenbaum, J. B. 2011. In-
ternal physics models guide probabilistic judgments about
object dynamics. In Proceedings of the 33rd annual confer-
ence of the cognitive science society, volume 2. Citeseer.
Janner, M.; Levine, S.; Freeman, W. T.; Tenenbaum, J. B.;
Finn, C.; and Wu, J. 2019. Reasoning About Physical Inter-
actions with Object-Centric Models. In International Con-
ference on Learning Representations.
Jia, Z.; Gallagher, A. C.; Saxena, A.; and Chen, T. 2014.
3d reasoning from blocks to stability. IEEE transactions on
pattern analysis and machine intelligence, 37(5): 905–918.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Kocaoglu, M.; Snyder, C.; Dimakis, A. G.; and Vishwanath,
S. 2018. CausalGAN: Learning Causal Implicit Generative
Models with Adversarial Training. In International Confer-
ence on Learning Representations.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural network-
s. Advances in neural information processing systems, 25:
1097–1105.
Kubricht, J. R.; Holyoak, K. J.; and Lu, H. 2017. Intuitive
physics: Current research and controversies. Trends in cog-
nitive sciences, 21(10): 749–759.
Lei, J.; Yu, L.; Bansal, M.; and Berg, T. L. 2018. TVQA:
Localized, Compositional Video Question Answering. In
EMNLP, 1369–1379.
Lerer, A.; Gross, S.; and Fergus, R. 2016. Learning phys-
ical intuition of block towers by example. In International
conference on machine learning, 430–438. PMLR.
Li, M.; Yang, M.; Liu, F.; Chen, X.; Chen, Z.; and Wang,
J. 2020a. Causal World Models by Unsupervised De-
confounding of Physical Dynamics. arXiv preprint arX-
iv:2012.14228.
Li, W.; Azimi, S.; Leonardis, A.; and Fritz, M. 2016. To fall
or not to fall: A visual approach to physical stability predic-
tion. arXiv preprint arXiv:1604.00066.
Li, W.; Leonardis, A.; and Fritz, M. 2017. Visual stability
prediction for robotic manipulation. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2606–2613. IEEE.
Li, Y.; He, H.; Wu, J.; Katabi, D.; and Torralba, A. 2020b.
Learning Compositional Koopman Operators for Model-
Based Control. In International Conference on Learning
Representations.
Li, Y.; Torralba, A.; Anandkumar, A.; Fox, D.; and Garg, A.
2020c. Causal discovery in physical systems from videos.
arXiv preprint arXiv:2007.00631.
Li, Y.; Wu, J.; Tedrake, R.; Tenenbaum, J. B.; and Torral-
ba, A. 2019. Learning Particle Dynamics for Manipulating



Rigid Bodies, Deformable Objects, and Fluids. In Interna-
tional Conference on Learning Representations.
Liu, Z.; Freeman, W. T.; Tenenbaum, J. B.; and Wu, J. 2018.
Physical primitive decomposition. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 3–19.
Lopez-Paz, D.; Nishihara, R.; Chintala, S.; Scholkopf, B.;
and Bottou, L. 2017. Discovering causal signals in images.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 6979–6987.
Lopez-Paz, D.; and Oquab, M. 2016. Revisiting classifier
two-sample tests. arXiv preprint arXiv:1610.06545.
Mao, J.; Gan, C.; Kohli, P.; Tenenbaum, J. B.; and Wu, J.
2019. The Neuro-Symbolic Concept Learner: Interpreting
Scenes, Words, and Sentences From Natural Supervision. In
International Conference on Learning Representations.
Martin-Ordas, G.; Call, J.; and Colmenares, F. 2008. Tubes,
tables and traps: great apes solve two functionally equiva-
lent trap tasks but show no evidence of transfer across tasks.
Animal cognition, 11(3): 423–430.
Mottaghi, R.; Bagherinezhad, H.; Rastegari, M.; and Farha-
di, A. 2016. Newtonian scene understanding: Unfolding the
dynamics of objects in static images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 3521–3529.
Pearl, J. 2009. Causal inference in statistics: An overview.
Statistics surveys, 3: 96–146.
Qi, H.; Wang, X.; Pathak, D.; Ma, Y.; and Malik, J. 2021.
Learning Long-term Visual Dynamics with Region Propos-
al Interaction Networks. In International Conference on
Learning Representations.
Riochet, R.; Castro, M. Y.; Bernard, M.; Lerer, A.; Fergus,
R.; Izard, V.; and Dupoux, E. 2018. Intphys: A framework
and benchmark for visual intuitive physics reasoning. arXiv
preprint arXiv:1803.07616.
Rojas-Carulla, M.; Baroni, M.; and Lopez-Paz, D. 2018.
Causal Discovery Using Proxy Variables.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model.
IEEE transactions on neural networks, 20(1): 61–80.
Spelke, E. S.; and Kinzler, K. D. 2007. Core knowledge.
Developmental science, 10(1): 89–96.
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